Skip to content

Commit 0386a10

Browse files
authored
Merge pull request #227 from KMarshallX/pre-release-2.0
Update docs
2 parents c7a112d + 93f0e05 commit 0386a10

File tree

11 files changed

+44
-24
lines changed

11 files changed

+44
-24
lines changed

.github/workflows/test_boost.yml

Lines changed: 3 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -9,6 +9,7 @@ on:
99
- config/boost_config.py
1010
- environment.yml
1111
- documentation/boost_readme.md
12+
- documentation/UPDATE.md
1213
- library/aug_utils.py
1314
- library/data_loaders.py
1415
- library/eval_utils.py
@@ -27,12 +28,14 @@ on:
2728
- config/boost_config.py
2829
- environment.yml
2930
- documentation/boost_readme.md
31+
- documentation/UPDATE.md
3032
- library/aug_utils.py
3133
- library/data_loaders.py
3234
- library/eval_utils.py
3335
- library/loss_func.py
3436
- library/module_utils.py
3537
- library/train_utils.py
38+
- tests/test_boost_module.sh
3639
- miniconda-setup.sh
3740
- .github/workflows/test_boost.yml
3841

.github/workflows/test_prediction.yml

Lines changed: 2 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -8,6 +8,7 @@ on:
88
- prediction.py
99
- config/pred_config.py
1010
- environment.yml
11+
- documentation/UPDATE.md
1112
- documentation/predict_readme.md
1213
- library/aug_utils.py
1314
- library/data_loaders.py
@@ -26,6 +27,7 @@ on:
2627
- prediction.py
2728
- config/pred_config.py
2829
- environment.yml
30+
- documentation/UPDATE.md
2931
- documentation/predict_readme.md
3032
- library/aug_utils.py
3133
- library/data_loaders.py

.github/workflows/test_train.yml

Lines changed: 2 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -8,6 +8,7 @@ on:
88
- train.py
99
- config/train_config.py
1010
- environment.yml
11+
- documentation/UPDATE.md
1112
- documentation/train_readme.md
1213
- library/aug_utils.py
1314
- library/data_loaders.py
@@ -26,6 +27,7 @@ on:
2627
- train.py
2728
- config/train_config.py
2829
- environment.yml
30+
- documentation/UPDATE.md
2931
- documentation/train_readme.md
3032
- library/aug_utils.py
3133
- library/data_loaders.py

.github/workflows/test_tta.yml

Lines changed: 2 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -8,6 +8,7 @@ on:
88
- test_time_adaptation.py
99
- config/adapt_config.py
1010
- environment.yml
11+
- documentation/UPDATE.md
1112
- documentation/tta_readme.md
1213
- library/aug_utils.py
1314
- library/data_loaders.py
@@ -26,6 +27,7 @@ on:
2627
- test_time_adaptation.py
2728
- config/adapt_config.py
2829
- environment.yml
30+
- documentation/UPDATE.md
2931
- documentation/tta_readme.md
3032
- library/aug_utils.py
3133
- library/data_loaders.py

README.md

Lines changed: 17 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -1,7 +1,8 @@
11
# **VesselBoost**
2-
*VesselBoost* is a Python-based software package utilizing deep learning techniques to segment high-resolution time-of-flight MRI angiography data, with high sensitivity towards small vessels. The software suite encompasses three essential functional modules: (1) *predict*, (2) *test-time adaptation* (TTA), and (3) *boost*. By leveraging these modules, users can efficiently segment high-resolution time-of-flight data or conveniently leverage our command line interface to boost segmentations for other vascular MRI image contrasts.
2+
*VesselBoost* is a Python-based software package utilizing deep learning techniques to segment high-resolution time-of-flight MRI angiography data, with high sensitivity towards small vessels (An experimental pretrained model is available for T2*-weighted imaging). The software suite encompasses three essential functional modules: (1) *predict*, (2) *test-time adaptation* (TTA), and (3) *boost*. By leveraging these modules, users can efficiently segment high-resolution time-of-flight data or conveniently leverage our command line interface to boost segmentations for other vascular MRI image contrasts.
33

44
## **Table of Contents**
5+
- [Update History](#update-history)
56
- [Purpose](#purpose)
67
- [Current Version](#current-version)
78
- [Requirements](#requirements)
@@ -10,6 +11,10 @@
1011
- [Citation](#citation)
1112
- [Contact](#contact)
1213

14+
## **Update History**
15+
- **1.0.0**: Initial release, for details see [Citation](#citation)
16+
- **2.0.0 - pre-release**: for details see [Update Log - 16/Sept/2025](documentation/UPDATE.md)
17+
1318
## **Purpose**
1419
*VesselBoost* is a Python-based software package leveraging a UNet3D-based segmentation pipeline that utilizes data augmentation and test-time adaptation (TTA) to enhance segmentation quality and is generally applicable to high-resolution magnetic resonance angiograms (MRAs).\
1520
This repository contains 3 major modules:
@@ -24,7 +29,7 @@ This repository contains 3 major modules:
2429

2530

2631
## **Current Version**
27-
VesselBoost 1.0.0
32+
VesselBoost 2.0.0
2833

2934
## **Requirements**
3035
- Docker / Singularity container
@@ -38,16 +43,16 @@ VesselBoost, pre-trained models, and required software are packaged in software
3843
The Dockerhub container is available at Dockerhub. To download the container, run the following command:
3944

4045
```
41-
docker pull vnmd/vesselboost_1.0.0
46+
docker pull vnmd/vesselboost_2.0.0
4247
```
4348

4449
### Neurodesk
4550
To predict vessel segmentation using your data and the latest version of VesselBoost on Neurodesk, you can run the following code snippet:
4651

4752
```bash
4853
ml vesselboost
49-
path_to_model=/cvmfs/neurodesk.ardc.edu.au/containers/vesselboost_1.0.0_20240815/vesselboost_1.0.0_20240815.simg/opt/VesselBoost/saved_models/
50-
prediction.py --ds_path /path/ --out_path /path/ --pretrained "$path_to_model"/manual_0429 --prep_mode 4
54+
path_to_model=/cvmfs/neurodesk.ardc.edu.au/containers/vesselboost_2.0.0_20250916/vesselboost_2.0.0_20250916.simg/opt/VesselBoost/saved_models/
55+
prediction.py --image_path /path/ --output_path /path/ --pretrained "$path_to_model"/BM_VB2_aug_all_ep2k_bat_10_0903 --prep_mode 4
5156
```
5257

5358
For more information, please check our [notebooks](https://github.com/KMarshallX/VesselBoost/tree/master/notebooks).
@@ -56,9 +61,16 @@ For more information, please check our [notebooks](https://github.com/KMarshallX
5661
This is a Python-based software package. To successfully run this project on your local machine, please follow the following steps to set up the necessary software environment.
5762

5863
1. Clone this repository to your local machine
64+
For latest version:
5965
```
6066
git clone https://github.com/KMarshallX/VesselBoost.git
67+
68+
```
69+
To clone the previous version (VesselBoost 1.0.0):
6170
```
71+
git clone -b stable_ver_1_0_0_hpc --single-branch https://github.com/KMarshallX/VesselBoost.git
72+
```
73+
6274
2. Install miniconda:
6375
```
6476
cd VesselBoost

documentation/UPDATE.md

Lines changed: 8 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,8 @@
1+
### Update Log - 16/Sept/2025
2+
- Pre-release of VesselBoost 2.0.0
3+
- New data augmentation strategies during training (train, TTA and boost)
4+
- Changed image preprocessing step from standardization to normalization
5+
- Improved code structure and readability
6+
- Bugs fixes and performance improvements
7+
- Added support for T2*-weighted imaging (experimental)
8+
- TODO: add notebook & github action test for previous version (1.0.0)

documentation/train_readme.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,4 +1,4 @@
1-
# **Initial Training Module**
1+
# **Training Module**
22
You can use this module to train your own base model.
33
## **Create a base model from scratch**
44
### Prepare the training data

documentation/tta_readme.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -11,7 +11,7 @@ mkdir ./pretrained_models/
1111
Download the pre-trained model from osf:
1212

1313
```bash
14-
osf -p abk4p fetch /osfstorage/pretrained_models/manual_0429 ./pretrained_models/manual_0429
14+
osf -p abk4p fetch /osfstorage/pretrained_models/BM_VB2_aug_all_ep2k_bat_10_0903 ./pretrained_models/BM_VB2_aug_all_ep2k_bat_10_0903
1515
```
1616

1717

requirements.txt

Lines changed: 0 additions & 12 deletions
This file was deleted.

tests/test_prediction_module.sh

Lines changed: 7 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -41,9 +41,12 @@ mkdir ./pretrained_models/
4141
pip install osfclient
4242
osf -p nr6gc fetch /osfstorage/twoEchoTOF/raw/GRE_3D_400um_TR20_FA18_TE7p5_14_sli52_FCY_GMP_BW200_32.nii ./data/images/sub-001.nii
4343
#pretrained model download
44-
osf -p abk4p fetch /osfstorage/pretrained_models/manual_0429 ./pretrained_models/manual_0429
45-
osf -p abk4p fetch /osfstorage/pretrained_models/omelette1_0429 ./pretrained_models/omelette1_0429
46-
osf -p abk4p fetch /osfstorage/pretrained_models/omelette2_0429 ./pretrained_models/omelette2_0429
44+
osf -p abk4p fetch /osfstorage/pretrained_models/BM_VB2_aug_all_ep2k_bat_10_0903 ./pretrained_models/BM_VB2_aug_all_ep2k_bat_10_0903
45+
osf -p abk4p fetch /osfstorage/pretrained_models/VB2_aug_off_ep2k_bat10_0903 ./pretrained_models/VB2_aug_off_ep2k_bat10_0903
46+
osf -p abk4p fetch /osfstorage/pretrained_models/VB2_aug_random_ep2k_bat10_0903 ./pretrained_models/VB2_aug_random_ep2k_bat10_0903
47+
osf -p abk4p fetch /osfstorage/pretrained_models/VB2_aug_intensity_ep2k_bat10_0903 ./pretrained_models/VB2_aug_intensity_ep2k_bat10_0903
48+
osf -p abk4p fetch /osfstorage/pretrained_models/VB2_aug_spatial_ep2k_bat10_0903 ./pretrained_models/VB2_aug_spatial_ep2k_bat10_0903
49+
4750

4851

4952
path_to_images="./data/images/"
@@ -55,7 +58,7 @@ echo "Path to output: "$path_to_output""
5558
path_to_preprocessed_images="./data/preprocessed_imgs/"
5659
echo "Path to preprocessed images: "$path_to_preprocessed_images""
5760

58-
path_to_pretrained_model="./pretrained_models/manual_0429"
61+
path_to_pretrained_model="./pretrained_models/BM_VB2_aug_all_ep2k_bat_10_0903"
5962
echo "Path to pretrained model: "$path_to_pretrained_model""
6063

6164
echo "[DEBUG]: testing prediction module without preprocessing:"

0 commit comments

Comments
 (0)