The :mod:`aeon.anomaly_detection` module contains algorithms and composition tools for time series classification.
All detectors in aeon can be listed using the aeon.utils.discovery.all_estimators utility,
using estimator_types="anomaly-detector"
, optionally filtered by tags.
Valid tags can be listed by calling the function aeon.utils.discovery.all_tags_for_estimator.
Each detector in this module specifies its supported input data format, output data format, and learning type as an overview table in its documentation. Some detectors support multiple learning types.
Note
Not all algorithm families are currently implemented. The documentation includes placeholders for planned categories which will be supported in future.
.. currentmodule:: aeon.anomaly_detection.distance_based
.. autosummary:: :toctree: auto_generated/ :template: class.rst CBLOF KMeansAD LeftSTAMPi LOF MERLIN OneClassSVM STOMP
.. currentmodule:: aeon.anomaly_detection.distribution_based
.. autosummary:: :toctree: auto_generated/ :template: class.rst COPOD DWT_MLEAD
The algorithms for this family are not implemented yet.
The algorithms for this family are not implemented yet.
.. currentmodule:: aeon.anomaly_detection.outlier_detection
.. autosummary:: :toctree: auto_generated/ :template: class.rst IsolationForest PyODAdapter STRAY
The algorithms for this family are not implemented yet.
.. currentmodule:: aeon.anomaly_detection.whole_series
.. autosummary:: :toctree: auto_generated/ :template: class.rst ROCKAD
.. currentmodule:: aeon.anomaly_detection.base
.. autosummary:: :toctree: auto_generated/ :template: class.rst BaseAnomalyDetector