-
Notifications
You must be signed in to change notification settings - Fork 90
/
Copy pathsample_image_classification.py
171 lines (139 loc) · 4.87 KB
/
sample_image_classification.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import os
import copy
import argparse
from typing import List, Any
import cv2
import mediapipe as mp # type:ignore
from mediapipe.tasks import python # type:ignore
from mediapipe.tasks.python import vision # type:ignore
from utils import CvFpsCalc
from utils.download_file import download_file
def get_args() -> argparse.Namespace:
parser = argparse.ArgumentParser()
parser.add_argument("--device", type=int, default=0)
parser.add_argument("--video", type=str, default=None)
parser.add_argument("--width", help='cap width', type=int, default=960)
parser.add_argument("--height", help='cap height', type=int, default=540)
parser.add_argument(
"--model",
type=int,
choices=[0, 1, 2, 3],
default=0,
help='''
0:EfficientNet-Lite0(int8)
1:EfficientNet-Lite0(float 32)
2:EfficientNet-Lite2(int8)
3:EfficientNet-Lite2(float 32)
''',
)
parser.add_argument(
"--max_results",
type=int,
default=5,
)
args = parser.parse_args()
return args
def main() -> None:
# 引数解析
args = get_args()
cap_device: int = args.device
cap_width: int = args.width
cap_height: int = args.height
model: int = args.model
max_results: int = args.max_results
if args.video is not None:
cap_device = args.video
model_url: List[str] = [
'https://storage.googleapis.com/mediapipe-models/image_classifier/efficientnet_lite0/int8/latest/efficientnet_lite0.tflite',
'https://storage.googleapis.com/mediapipe-models/image_classifier/efficientnet_lite0/float32/latest/efficientnet_lite0.tflite',
'https://storage.googleapis.com/mediapipe-models/image_classifier/efficientnet_lite2/float32/latest/efficientnet_lite2.tflite',
'https://storage.googleapis.com/mediapipe-models/image_classifier/efficientnet_lite2/float32/latest/efficientnet_lite2.tflite',
]
# ダウンロードファイル名生成
model_name: str = model_url[model].split('/')[-1]
quantize_type: str = model_url[model].split('/')[-3]
split_name: List[str] = model_name.split('.')
model_name = split_name[0] + '_' + quantize_type + '.' + split_name[1]
# 重みファイルダウンロード
model_path: str = os.path.join('model', model_name)
if not os.path.exists(model_path):
download_file(url=model_url[model], save_path=model_path)
# カメラ準備
cap: cv2.VideoCapture = cv2.VideoCapture(cap_device)
cap.set(cv2.CAP_PROP_FRAME_WIDTH, cap_width)
cap.set(cv2.CAP_PROP_FRAME_HEIGHT, cap_height)
# Classifier生成
base_options: python.BaseOptions = python.BaseOptions(
model_asset_path=model_path)
options: vision.ImageClassifierOptions = vision.ImageClassifierOptions(
base_options=base_options, max_results=max_results)
classifier: vision.ImageClassifier = vision.ImageClassifier.create_from_options(
options) # type:ignore
# FPS計測モジュール
cvFpsCalc: CvFpsCalc = CvFpsCalc(buffer_len=10)
while True:
display_fps: float = cvFpsCalc.get()
# カメラキャプチャ
ret: bool
frame: Any
ret, frame = cap.read()
if not ret:
break
# 推論実施
rgb_frame: mp.Image = mp.Image(
image_format=mp.ImageFormat.SRGBA,
data=cv2.cvtColor(frame, cv2.COLOR_BGR2RGBA),
)
classification_result: vision.ClassificationResult = classifier.classify(
rgb_frame)
# 描画
debug_image: Any = copy.deepcopy(frame)
debug_image = draw_debug(
debug_image,
classification_result,
display_fps,
)
# 画面反映
cv2.imshow('MediaPipe Image Classification Demo', debug_image)
# キー処理(ESC:終了)
key: int = cv2.waitKey(1)
if key == 27: # ESC
break
cap.release()
cv2.destroyAllWindows()
def draw_debug(
image: Any,
classification_result, # type:ignore
display_fps: float,
) -> Any:
# FPS
cv2.putText(
image,
"FPS:" + str(display_fps),
(10, 30),
cv2.FONT_HERSHEY_SIMPLEX,
1.0,
(0, 255, 0),
2,
cv2.LINE_AA,
)
# カテゴリー名
classification_info = classification_result.classifications[0]
for index, category_info in enumerate(classification_info.categories):
category_name: str = category_info.category_name
score: float = category_info.score
cv2.putText(
image,
category_name + ":" + str(round(score, 3)),
(10, 40 + (25 * (index + 1))),
cv2.FONT_HERSHEY_SIMPLEX,
0.8,
(0, 255, 0),
2,
cv2.LINE_AA,
)
return image
if __name__ == '__main__':
main()