-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathFaceRecogRun.py
25 lines (19 loc) · 957 Bytes
/
FaceRecogRun.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
import numpy as np
from FaceRecogPreload import load_and_preprocess_images,mean_face,eigenfaces, known_face_coefficients, face_labels
def recognize_face(test_image, mean_face, eigenfaces, known_face_coefficients, face_labels):
test_image_vec = load_and_preprocess_images(test_image)
projected_test_image = test_image_vec - mean_face
coefficients = np.dot(projected_test_image, eigenfaces.T)
distances = np.linalg.norm(coefficients - known_face_coefficients, axis=1)
min_index = np.argmin(distances)
recognition_threshold = 0.5
if distances[min_index] < recognition_threshold:
return True, face_labels[min_index]
else:
return False, None
test_image = "Python/Amrita/math/img.jpg"
recognized, name = recognize_face(test_image, mean_face, eigenfaces, known_face_coefficients, face_labels)
if recognized:
print(f"Face recognized: {name}")
else:
print("Face not recognized")