An end-to-end data pipeline using Airflow, Snowflake, dbt, and Superset to analyze historical stock prices (e.g., AAPL, NVDA).
- Airflow – Orchestrates ETL & dbt runs
- Snowflake – Stores raw and transformed data
- dbt – Transforms, tests, and snapshots data
- Superset – Visualizes key metrics (MA14, MA50, RSI)
Airflow DAGfetches stock data from Yahoo Finance.- Data is stored in
Snowflake (raw.stock_data). dbttransforms it intoanalytics.stock_metrics.Supersetdisplays dashboards with filters & charts.
raw_stock_data.sql– Raw data modelstock_metrics.sql– Adds moving averages- Tests for nulls
- Snapshot of daily close
Includes:
- Closing price trend
- MA14 vs MA50