-
Notifications
You must be signed in to change notification settings - Fork 45
/
Copy pathMedian of Two Sorted Arrays.cpp
50 lines (48 loc) · 1.43 KB
/
Median of Two Sorted Arrays.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
/*Given two sorted arrays nums1 and nums2 of size m and n respectively, return the median of the two sorted arrays.
The overall run time complexity should be O(log (m+n)).*/
class Solution {
public:
double findMedianSortedArrays(vector<int>& nums1, vector<int>& nums2) {
int l1=nums1.size();
int l2=nums2.size();
vector<int> nums3;
vector<int> v;
int i=0,j=0;int p=0;
int limit=(l1+l2)/2;
while(p<=limit&&i<l1&&j<l2){
if(nums1[i]>nums2[j]){
nums3.insert(nums3.begin()+p,nums2[j]);
j++;
}
else if(nums1[i]==nums2[j]){
nums3.insert(nums3.begin()+p,nums2[j]);
j++;
}
else{
nums3.insert(nums3.begin()+p,nums1[i]);
i++;
}
p++;
}
if(i==l1){
while(p<=limit){
nums3.insert(nums3.begin()+p,nums2[j]);
j++;
p++;
}
}
else if(j==l2){
while(p<=limit){
nums3.insert(nums3.begin()+p,nums1[i]);
i++;
p++;
}
}
if((l1+l2)%2!=0){
return nums3[nums3.size()-1];
}
else{
return (nums3[nums3.size()-2]+nums3[nums3.size()-1])/2.0;
}
}
};