|
| 1 | +import lbann |
| 2 | +from lbann.modules import Module, ChannelwiseFullyConnectedModule, ConvolutionModule |
| 3 | +import lbann.modules |
| 4 | +import math |
| 5 | + |
| 6 | + |
| 7 | +def ContractHeads(lbann_graph_layer, shape): |
| 8 | + """ |
| 9 | + A utility function that contracts the rows of a (N, M, H) matrix to an (N, M) matrix using grouped 2D convolution. |
| 10 | + The contration computes the average along the first dimension so the output is scaled by 1 / H. |
| 11 | +
|
| 12 | + Args: |
| 13 | + lbann_graph_layer (layer): Graph layer tensor with shape (N, M, H) |
| 14 | +
|
| 15 | + shape ((int, int, int)): Shape of graph layer tensor |
| 16 | +
|
| 17 | + Returns: |
| 18 | + (Layer): Contracted and rescaled output with shape (N, M) |
| 19 | + """ |
| 20 | + num_nodes, output_channels, num_heads = shape |
| 21 | + weights = lbann.Weights( |
| 22 | + initializer=lbann.ConstantInitializer(value=1 / num_heads), |
| 23 | + optimizer=lbann.NoOptimizer(), |
| 24 | + ) |
| 25 | + kernel_shape = (1, num_heads) |
| 26 | + contraction = lbann.Convolution( |
| 27 | + num_dims=2, |
| 28 | + output_channels=num_nodes, |
| 29 | + kernel_size=kernel_shape, |
| 30 | + stride=1, |
| 31 | + padding=0, |
| 32 | + groups=num_nodes, |
| 33 | + has_bias=False, |
| 34 | + weights=weights, |
| 35 | + ) |
| 36 | + output = lbann.Reshape(contraction, dims=[num_nodes, output_channels]) |
| 37 | + return output |
| 38 | + |
| 39 | + |
| 40 | +class GAT(Module): |
| 41 | + """Graph Attention Network layer. For kernel details, see: |
| 42 | +
|
| 43 | + https://arxiv.org/abs/1710.10903 |
| 44 | +
|
| 45 | + """ |
| 46 | + |
| 47 | + global_count = 0 |
| 48 | + |
| 49 | + def __init__( |
| 50 | + self, |
| 51 | + input_channels, |
| 52 | + output_channels, |
| 53 | + num_nodes, |
| 54 | + num_edges, |
| 55 | + num_heads=1, |
| 56 | + name=None, |
| 57 | + ): |
| 58 | + """Initialize GatedGraph layer |
| 59 | + Args: |
| 60 | + input_channels (int): The size of the input node features |
| 61 | + output_channels (int): The output size of the node features |
| 62 | + num_nodes (int): Number of vertices in the graph |
| 63 | + num_edges (int): Number of edges in the graph |
| 64 | + num_heads (int): Number of attention heads (default: 1) |
| 65 | + name (str): Name of the layers and prefix to use for the layers. |
| 66 | + data_layout (str): Data layout (default: data parallel) |
| 67 | + """ |
| 68 | + super().__init__() |
| 69 | + |
| 70 | + # Add Name for the components for the layer |
| 71 | + GAT.global_count += 1 |
| 72 | + self.name = name if name else "GAT_{}".format(GAT.global_count) |
| 73 | + # Add variables |
| 74 | + self.output_channel_size = output_channels |
| 75 | + self.input_channel_size = input_channels |
| 76 | + self.num_nodes = num_nodes |
| 77 | + self.num_edges = num_edges |
| 78 | + self.num_heads = num_heads |
| 79 | + |
| 80 | + weights = lbann.Weights( |
| 81 | + initializer=lbann.UniformInitializer( |
| 82 | + min=-1 / (math.sqrt(output_channels)), |
| 83 | + max=1 / (math.sqrt(output_channels)), |
| 84 | + ) |
| 85 | + ) |
| 86 | + self.W_k = ChannelwiseFullyConnectedModule( |
| 87 | + self.output_channel_size * num_heads, |
| 88 | + bias=False, |
| 89 | + weights=[weights], |
| 90 | + name=f"{self.name}_nn_{1}", |
| 91 | + ) |
| 92 | + |
| 93 | + self.a_vec = ConvolutionModule( |
| 94 | + num_dims=1, |
| 95 | + out_channels=self.num_nodes, |
| 96 | + kernel_size=[2 * self.output_channel_size, 1], |
| 97 | + groups=self.num_nodes, |
| 98 | + bias=False, |
| 99 | + name=f"{self.name}_nn_{2}", |
| 100 | + ) |
| 101 | + |
| 102 | + def forward( |
| 103 | + self, node_feature_mat, source_indices, target_indices, reduction="concat" |
| 104 | + ): |
| 105 | + """Call GATGraphConv |
| 106 | + Args: |
| 107 | + node_feature_mat (Layer): Node feature matrix with the shape of (num_nodes, input_channels) |
| 108 | + source_indices (Layer): Source node indices of the edges with shape (num_edges) |
| 109 | + target_indices (Layer): Target node indices of the edges with shape (num_edges) |
| 110 | + reduction (string: [concat| average]): The type of reductions to use for multiple heads |
| 111 | + Returns: |
| 112 | + (Layer) : The output after kernel ops. The shape of the layer is |
| 113 | + (num_nodes, num_heads * num_output_channels) if reduction is "concat" |
| 114 | + (num_nodes, num_output_channels) if reduction is "average" |
| 115 | + """ |
| 116 | + # (N x [self.output_channel * self.num_heads]) |
| 117 | + transform_node_features = self.W_nn( |
| 118 | + node_feature_mat, name=f"{self.name}_transform" |
| 119 | + ) |
| 120 | + # (E x [self.output_channel * self.num_heads]) |
| 121 | + e_i = lbann.Gather(transform_node_features, source_indices, axis=0) |
| 122 | + e_j = lbann.Gather(transform_node_features, target_indices, axis=0) |
| 123 | + # (E x self.output_channel x self.num_heads) |
| 124 | + e_i = lbann.Reshape( |
| 125 | + e_i, dims=[self.num_edges, self.output_channel_size, self.num_heads] |
| 126 | + ) |
| 127 | + e_j = lbann.Reshape( |
| 128 | + e_j, dims=[self.num_edges, self.output_channel_size, self.num_heads] |
| 129 | + ) |
| 130 | + # (E x 2 * self.output_channel x self.num_heads) |
| 131 | + messages = lbann.Concatenation([e_i, e_j], axis=1) |
| 132 | + # (E x self.num_heads) |
| 133 | + m_ij = lbann.Reshape( |
| 134 | + self.a_vec(messages), dims=[self.num_edges, self.num_heads] |
| 135 | + ) |
| 136 | + m_ij = lbann.ExpOperator(lbann.LeakyRelu(m_ij, negative_slope=0.02)) |
| 137 | + # (N x self.num_heads) |
| 138 | + contraction = lbann.Scatter(m_ij, target_indices, axis=0) |
| 139 | + # (N x 1 x self.num_heads) |
| 140 | + broadcast = lbann.Reshape(contraction, dims=[self.num_nodes, 1, self.num_heads]) |
| 141 | + # (E x 1 x self.num_heads) |
| 142 | + broadcast = lbann.Gather(broadcast, target_indices, axis=1) |
| 143 | + # (E x self.output_channel_size x self.num_heads) |
| 144 | + broadcast = lbann.Tessellate( |
| 145 | + broadcast, dims=[self.num_edges, self.output_channel_size, self.num_heads] |
| 146 | + ) |
| 147 | + # (E x self.output_channel_size x self.num_heads) |
| 148 | + normalize = lbann.Scatter(broadcast, source_indices, axis=0) |
| 149 | + alpha_ij = lbann.DivideOperator(m_ij, normalize) |
| 150 | + |
| 151 | + h_ij = lbann.MultiplyOperator(alpha_ij, e_j) |
| 152 | + |
| 153 | + h_i = lbann.Scatter(h_ij, source_indices) |
| 154 | + |
| 155 | + if reduction.lower() == "concat": |
| 156 | + node_feature_mat = lbann.Reshape(h_i) |
| 157 | + elif reduction.lower() == "average": |
| 158 | + node_feature_mat = ContractHeads( |
| 159 | + h_i, (self.num_nodes, self.output_channel_size, self.num_heads) |
| 160 | + ) |
| 161 | + else: |
| 162 | + raise ValueError("Expected reduction arguments are: concat or average") |
| 163 | + |
| 164 | + return node_feature_mat |
0 commit comments