You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
============================== Release Notes: v0.101 ==============================
Support for new training algorithms:
Support for new network structures:
- ATOM VAE model
- Graph neural networks
- Graph Convolutional Networks (GCN)
- 3D U-Net Model
Support for new layers:
- Implemented optimized GRU layer using cuDNN kernel
- Graph Layers: GCN, GIN, Graph, GatedGraph
Python front-end:
- Support for Graph and Graph Convolutional Networks
- Added support for OCLF data center (Summit)
Performance optimizations:
- Optimize CUDA kernel for tensor reordering in GRU layer
- Enabled TensorCore optimization for GRU layer
- GCN and Graph layers also have a faster Dense variant which only utilizes Matrix Multiplication
Model portability & usability:
- Added Users Quickstart section to documentation including PyTorch
to LBANN mini-tutorial
- Added section on callbacks with detailed instructions on summarize
images callback
Internal features:
- Support for double data type in distributed embedding layer
- Support for large number of channels in GPU batchnorm layer
- Modified LTFB so that NaNs lose tournaments
- Improved numerical stability of reconstruction loss in ATOM VAE
model
- Skip bad gradients in Adam
I/O & data readers:
- Added support for ImageNet data reader to use sample lists
- Refactored sample list code to be more flexible and generalize
beyond JAG data reader
- Added support for slab-based I/O in HDF5 data reader required by
DistConv implementations of CosmoFlow 3D volumes
- Extended slab-based HDF5 data reader to support labels and
reconstruction modes for use with U-Net architecture
Datasets:
- Added two graph datasets (MNIST, and PROTEINS)
Build system and Dependent Libraries:
- Hydrogen 1.4.0
- Aluminum 0.4.0
- Spack v0.15.4+ (Requires new format for environments)
- cuDNN 8.0.2
- Require C++14
- Added Spack build support for OCLF data center (Summit)
Bug fixes:
- Properly reset data coordinator after each LTFB round
- Fixed bug in weights proxy when weights buffer is reallocated
- Bugfix for smiles data reader bound checking and simple LTFB data
distribution
- Eliminated a race condition observed in VAE ATOM model with SMILES
data reader. Added a barrier after each data store mini-batch
exchange -- avoid race between non-blocking sends and receives and
later GPU kernel communication.
Retired features:
0 commit comments