-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathkp_16bands_Luttinger_Fishman_f.m
193 lines (150 loc) · 8.32 KB
/
kp_16bands_Luttinger_Fishman_f.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
function[E]=kp_16bands_Luttinger_Fishman_f(k_list, Eg8c, Eg7c, Eg6c, Dso, Eg6v, EP, EP14, EPs, F, gc123, g123)
% Guy Fishman
% "Semi-Conducteurs: les Bases de la Theorie k.p " (2010)
% Structure de bande: II, 4.B Appendice : La matrice 14x14 ou hamiltonien H14, page 274
% https://www.amazon.fr/Semi-Conducteurs-Bases-Theorie-K-P-Fishman/dp/2730214976/ref=sr_1_fkmr1_1?ie=UTF8&qid=1548234034&sr=8-1-fkmr1&keywords=guy+fishman+kp
% https://www.abebooks.fr/semi-conducteurs-bases-th%C3%A9orie-k.p-Fishman-ECOLE/30091636895/bd
% https://www.decitre.fr/livres/semi-conducteurs-les-bases-de-la-theorie-k-p-9782730214971.html
% https://www.unitheque.com/Livre/ecole_polytechnique/Semi_conducteurs_les_bases_de_la_theorie_K.p-35055.html
% https://www.eyrolles.com/Sciences/Livre/semi-conducteurs-les-bases-de-la-theorie-k-p-9782730214971/
% Matrix H16 is based on the H14
% To get the H16, I had the valence band Eg6v~-12.5eV with the Eps parameters
% I find the way to write the 2 matrix lines in S. Ben Radhia, JAP 92, 4422, (2002)
% The results are not nuch different from the 14x14 bands
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%% Constants %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
h=6.62606896E-34; %% Planck constant [J.s]
hbar=h/(2*pi);
e=1.602176487E-19; %% charge de l electron [Coulomb]
m0=9.10938188E-31; %% electron mass [kg]
H0=hbar^2/(2*m0) ;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Eg8c = Eg8c*e;
Eg7c = Eg7c*e;
Eg6c = Eg6c*e;
Eg8v = 0;
Eg7v = -Dso*e;
%Dso = Dso*e;
Eg6v = Eg6v*e;
EP = EP *e;
EPx = EP14(1)*e;
EPp = EP14(2)*e;
EPs = EPs *e;
P = sqrt(EP *hbar^2/(2*m0)) ;
Px = sqrt(EPx *hbar^2/(2*m0)) ;
Pp = sqrt(EPp *hbar^2/(2*m0)) ;
Ps = sqrt(EPs(1)*hbar^2/(2*m0)) ;
Psp= sqrt(EPs(2)*hbar^2/(2*m0)) ;
%gc= 1+2*F + EP*(Eg6c-2*Eg7v/3) / (Eg6c*(Eg6c-Eg7v)) ; % =1/mc electron in CB eff mass
gc1=gc123(1); gc2=gc123(2); gc3=gc123(3);
g1=g123(1); g2=g123(2); g3=g123(3);
% renormalization of all the gamma for the 8bands Hamiltonian
%gc = gc - EP/3*( 2/Eg6c + 1/(Eg6c+Dso) ) + EPp/3*( 2/(Eg8c-Eg6c) + 1/(Eg7c-Eg6c) );
gc = 1+2*F + EPp/3*( 2/(Eg8c-Eg6c) + 1/(Eg7c-Eg6c) );
g1 = g1 - EP/(3*Eg6c) - EPx/3*(1/(Eg7c-Eg8v) + 1/(Eg8c-Eg8v) ) ;
g2 = g2 - EP/(6*Eg6c) + EPx/6/(Eg7c-Eg8v);
g3 = g3 - EP/(6*Eg6c) - EPx/6/(Eg7c-Eg8v);
gD1=g1;gD2=g2;gD3=g3;
% gD1 = g1 - EP/3/Eg6c - EPx/3*(1/Eg7c + 1/Eg8c - 2/(Eg8c-Eg7v)) ;
% gD2 = g2 - EP/6/Eg6c - EPx/12*(1/Eg8c + 1/(Eg8c-Eg7v) -2/Eg7c) ;
% gD3 = g3 - EP/6/Eg6c + EPx/12*(1/Eg8c + 1/(Eg8c-Eg7v) -2/Eg7c) ;
gc1=gc123(1); gc2=gc123(2); gc3=gc123(3);
%gc1 = gc123(1) + EPp/(3*(Eg8c-Eg6c)) + EPx/3*(1/(Eg8c-Eg8v) + 1/(Eg8c-Eg7v) ) ;
%gc2 = gc123(2) + EPp/(6*(Eg8c-Eg6c)) - EPx/6/(Eg8c-Eg7v);
%gc3 = gc123(3) + EPp/(6*(Eg8c-Eg6c)) + EPx/6/(Eg8c-Eg7v);
%gcD1 = gc1 + EPx/3 *(1/(Eg8c-Eg8v) + 1/(Eg8c-Eg7v) - 2/Eg7c ) ;
%gcD2 = gc2 + EPx/12*(1/(Eg8c-Eg8v) + 1/Eg7c - 2/(Eg8c-Eg7v)) ;
%gcD3 = gc3 - EPx/12*(1/(Eg8c-Eg8v) + 1/Eg7c - 2/(Eg8c-Eg7v)) ;
gcD1=gc1;gcD2=gc2;gcD3=gc3;
gv=-1; % unknown parameter... It gives the curvature of the lowest BV: Eg6v
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%% Building of the Hamiltonien %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%k+ = kx + 1i*ky
%k- = kx - 1i*ky
for i=1:length(k_list(:,1))
kx = k_list(i,1);
ky = k_list(i,2);
kz = k_list(i,3);
k=sqrt(kx.^2 + ky.^2 + kz.^2);
kpp = kx + 1i*ky;
kmm = kx - 1i*ky;
AA = H0*g2 *( 2*kz^2 - kx.^2 - ky.^2 );
AAc = H0*gc2*( 2*kz^2 - kx.^2 - ky.^2 );
BB = H0*2*sqrt(3)*g3 *kz*(kx - 1i*ky) ;
BBc = H0*2*sqrt(3)*gc3*kz*(kx - 1i*ky) ;
CC = H0*sqrt(3)*(g2 *(kx^2-ky^2)-2i*g3 *kx*ky);
CCc = H0*sqrt(3)*(gc2*(kx^2-ky^2)-2i*gc3*kx*ky);
AA_D = H0*gD2 *( 2*kz^2 - kx.^2 - ky.^2 );
AAc_D = H0*gcD2*( 2*kz^2 - kx.^2 - ky.^2 );
BB_D = H0*2*sqrt(3)*gD3 *kz*(kx - 1i*ky) ;
BBc_D = H0*2*sqrt(3)*gcD3*kz*(kx - 1i*ky) ;
CC_D = H0*sqrt(3)*(gD2 *(kx^2-ky^2)-2i*gD3 *kx*ky);
CCc_D = H0*sqrt(3)*(gcD2*(kx^2-ky^2)-2i*gcD3*kx*ky);
EH8c = Eg8c - gc1 *H0*k^2 + AAc;
EL8c = Eg8c - gc1 *H0*k^2 - AAc;
E7c = Eg7c - gcD1*H0*k^2 ;
E6c = Eg6c + gc *H0*k^2 ;
EH8v = 0 - g1 *H0*k^2 + AA ;
EL8v = 0 - g1 *H0*k^2 - AA ;
E7v = Eg7v- gD1 *H0*k^2 ;
E6v = Eg6v- gv *H0*k^2 ;
Hdiag = [ EH8c EL8c EL8c EH8c E7c E7c E6c E6c EH8v EL8v EL8v EH8v E7v E7v E6v E6v];
% Ec Ec HH LH LH HH SO SO
H8x8=[
0 0 -sqrt(1/2)*P*kpp sqrt(2/3)*P*kz sqrt(1/6)*P*kmm 0 sqrt(1/3)*P*kz sqrt(1/3)*P*kmm % Ec
0 0 0 -sqrt(1/6)*P*kpp sqrt(2/3)*P*kz sqrt(1/2)*P*kmm sqrt(1/3)*P*kpp -sqrt(1/3)*P*kz % Ec
0 0 0 BB CC 0 sqrt(1/2)*BB_D sqrt(2) *CC_D % HH
0 0 0 0 0 CC -sqrt(2) *AA_D -sqrt(3/2)*BB_D % LH
0 0 0 0 0 -BB -sqrt(3/2)*BB_D' sqrt(2) *AA_D % LH
0 0 0 0 0 0 -sqrt(2) *CC_D' sqrt(1/2)*BB_D' % HH
0 0 0 0 0 0 0 0 % SO
0 0 0 0 0 0 0 0 % SO
];
% HHc LHc LHc HHc SOc SOc
H6x6=[
0 BBc CCc 0 sqrt(1/2)*BBc_D sqrt(2) *CCc_D % HHc
0 0 0 CCc -sqrt(2) *AAc_D -sqrt(3/2)*BBc_D % LHc
0 0 0 -BBc -sqrt(3/2)*BBc_D' sqrt(2) *AAc_D % LHc
0 0 0 0 -sqrt(2) *CCc_D' sqrt(1/2)*BBc_D' % HHc
0 0 0 0 0 0 % SOc
0 0 0 0 0 0 % SOc
];
Deltap=0;%Dso; % unknown parameter...
% Ec Ec HH LH LH HH SO SO
H6x8=[
-sqrt(1/2)*Pp*kmm 0 1/3*Deltap sqrt(1/3)*Px*kpp sqrt(1/3)*Px*kz 0 sqrt(1/6)*Px*kpp sqrt(2/3)*Px*kz % HHc
sqrt(2/3)*Pp*kz -sqrt(1/6)*Pp*kmm -sqrt(1/3)*Px*kmm 1/3*Deltap 0 sqrt(1/3)*Px*kz 0 -sqrt(1/2)*Px*kpp % LHc
sqrt(1/6)*Pp*kpp sqrt(2/3)*Pp*kz -sqrt(1/3)*Px*kz 0 1/3*Deltap -sqrt(1/3)*Px*kpp sqrt(1/2)*Px*kmm 0 % LHc
0 sqrt(1/2)*Pp*kpp 0 -sqrt(1/3)*Px*kz sqrt(1/3)*Px*kmm 1/3*Deltap sqrt(2/3)*Px*kz -sqrt(1/6)*Px*kmm % HHc
sqrt(1/3)*Pp*kz sqrt(1/3)*Pp*kmm -sqrt(1/6)*Px*kmm 0 -sqrt(1/2)*Px*kpp -sqrt(2/3)*Px*kz -2/3*Deltap 0 % SOc
sqrt(1/3)*Pp*kpp -sqrt(1/3)*Pp*kz -sqrt(2/3)*Px*kz sqrt(1/2)*Px*kmm 0 sqrt(1/6)*Px*kpp 0 -2/3*Deltap % SOc
];
H14=[H6x6 H6x8 ; zeros(8,6) H8x8];
% Here are the 2 additionnal bands @~-12.5eV for Gamma6v
% Gamma6v Gamma6v
H16x2=[
-sqrt(1/2)*Ps *kmm 0 % HHc
sqrt(2/3)*Ps *kz -sqrt(1/6)*Ps *kmm % LHc
sqrt(1/6)*Ps *kpp sqrt(2/3)*Ps *kz % LHc
0 sqrt(1/2)*Ps *kpp % HHc
sqrt(1/3)*Ps *kz sqrt(1/3)*Ps *kmm % SOc
sqrt(1/3)*Ps *kpp -sqrt(1/3)*Ps *kz % SOc
0 0 % Ec
0 0 % Ec
-sqrt(1/2)*Psp*kmm 0 % HH
sqrt(2/3)*Psp*kz -sqrt(1/6)*Psp*kmm % LH
sqrt(1/6)*Psp*kpp sqrt(2/3)*Psp*kz % LH
0 sqrt(1/2)*Psp*kpp % HH
sqrt(1/3)*Psp*kz sqrt(1/3)*Psp*kmm % SO
sqrt(1/3)*Psp*kpp -sqrt(1/3)*Psp*kz % SO
0 0 % Gamma6v
0 0 % Gamma6v
];
H16=[ [H14;zeros(2,14)] H16x2 ];
H = H16' + H16 + diag(Hdiag);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
E(:,i) = eig(H)/e;
end
end