-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
231 lines (210 loc) · 7.34 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
from Module import *
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.cm as cm
from Linear import Linear, MSE
from Encapsulage import Sequential,Optim,SGD
from Softmax import Softmax,CEloss,CrossEntropy
import Non_linear
from AutoEncoder import *
# np.random.seed(1)
def testlinear(datax,datay):
## Lineaire et MSE
linear = Linear(10,1)
linear.zero_grad()
mse = MSE()
# print(datax,datay)
l_mse = []
for _ in range(100):
res_lin = linear.forward(datax)
res_mse = mse.forward(datay, res_lin)
delta_mse = mse.backward(datay,res_lin)
l_mse.append(sum(res_mse))
linear.zero_grad()
linear.backward_update_gradient(datax,delta_mse)
linear.update_parameters()
return l_mse,"Linear",100
def testNonLinear(X,Y):
sigmoide = Non_linear.Sigmoide()
tanh = Non_linear.Tanh()
coche1 = Linear(2,5)
coche2 = Linear(5,1)
mse = MSE()
res_sigmoide = None
loss = []
maxIter = 100
for _ in range(maxIter):
#forward
res_lin1 = coche1.forward(X)
res_tanh = tanh.forward(res_lin1)
res_lin2 = coche2.forward(res_tanh)
res_sigmoide = sigmoide.forward(res_lin2)
#loss
res = np.array([[1 if res_sigmoide[i] > 0.5 else 0] for i in range(len(res_sigmoide))])
# res = np.array([res_sigmoide[i] > 0 for i in range(len(res_sigmoide))])
# print("res",res.shape)
loss.append(sum(mse.forward(Y.reshape(-1, 1), res)))
#retro-propager
res_mse = mse.backward(Y.reshape(-1, 1), res)
# print("mse",res_mse.shape)
delta_sig = sigmoide.backward_delta(res_lin2,res_mse)
coche2.zero_grad()
coche2.backward_update_gradient(res_tanh, delta_sig)
coche2.update_parameters(0.05)
delta_lin2 = coche2.backward_delta(X, delta_sig)
delta_tanh = tanh.backward_delta(res_lin1,delta_lin2)
coche1.zero_grad()
coche1.backward_update_gradient(X, delta_tanh)
coche1.update_parameters(0.05)
return loss,"Nonlinear",maxIter
def testSequential(X,Y):
#construct
seq = Sequential()
seq.add_module(Linear(2,5))
seq.add_module(Non_linear.Tanh())
seq.add_module(Linear(5,1))
seq.add_module(Non_linear.Sigmoide())
def fctSig(res):
return np.array([[1 if res[i] > 0.5 else 0] for i in range(len(res))])
#evolute
maxIter = 100
for _ in range(maxIter):
seq.forward(X)
seq.backward(X,Y,fctsort = fctSig)
return seq.histLoss,"Sequential",maxIter
def testOptim(X,Y):
#construct
seq = Sequential()
seq.add_module(Linear(2,5))
seq.add_module(Non_linear.Tanh())
seq.add_module(Linear(5,1))
seq.add_module(Non_linear.Sigmoide())
def fctSig(res):
return np.array([[1 if res[i] > 0.5 else 0] for i in range(len(res))])
#evolute
maxIter = 100
optim = Optim(seq,fctsort = fctSig)
for _ in range(maxIter):
optim.step(X,Y)
return optim.moduleList.histLoss,"Optim",maxIter
def testSGD(X,Y):
#construct
seq = Sequential()
seq.add_module(Linear(2,5))
seq.add_module(Non_linear.Tanh())
seq.add_module(Linear(5,1))
seq.add_module(Non_linear.Sigmoide())
def fctSig(res):
return np.array([[1 if res[i] > 0.5 else 0] for i in range(len(res))])
#evolute
maxIter = 300
rn = SGD(seq,X,Y,50,MSE,fctSig,maxIter)
return rn.moduleList.histLoss,"SGD",maxIter
def load_usps(fn):
with open(fn,"r") as f:
f.readline()
data = [[float(x) for x in l.split()] for l in f if len(l.split())>2]
tmp=np.array(data)
return tmp[:,1:],tmp[:,0].astype(int)
def get_usps(l,datax,datay):
if type(l)!=list:
resx = datax[datay==l,:]
resy = datay[datay==l]
return resx,resy
tmp = list(zip(*[get_usps(i,datax,datay) for i in l]))
tmpx,tmpy = np.vstack(tmp[0]),np.hstack(tmp[1])
return tmpx,tmpy
def show_usps(data):
plt.imshow(data.reshape((16,16)),interpolation="nearest",cmap="gray")
def testSoftmax():
uspsdatatrain = "data/USPS_train.txt"
uspsdatatest = "data/USPS_test.txt"
X, Y = load_usps(uspsdatatrain)
Xtest, Ytest = load_usps(uspsdatatest)
onehot = np.zeros((Y.size, 10),dtype=np.int)
onehot[np.arange(Y.size), Y] = 1
# print(X.shape,Y.shape,onehot.shape)
seq = Sequential()
seq.add_module(Linear(256, 50))
seq.add_module(Non_linear.Tanh())
seq.add_module(Linear(50, 10))
seq.add_module(Softmax())
# print(X[0])
# return 0
# evolute
maxIter = 100
optim = Optim(seq,loss=CrossEntropy,eps=0.01)
# print(onehot[0])
for _ in range(maxIter):
optim.step(X, onehot)
return optim.moduleList.histLoss, "Softmax", maxIter
def testAutoEncoder():
#pepre data
uspsdatatrain = "data/USPS_train.txt"
uspsdatatest = "data/USPS_test.txt"
alltrainx, alltrainy = load_usps(uspsdatatrain)
alltestx, alltesty = load_usps(uspsdatatest)
neg = 9
pos = 6
datax, datay = get_usps([neg, pos], alltrainx, alltrainy)
datay = np.array([1 if datay[i] == 6 else 0 for i in range(len(datay))])
testx, testy = get_usps([neg, pos], alltestx, alltesty)
maxIter = 100
#rn encodage
encodage = Sequential()
encodage.add_module(Linear(256, 100))
encodage.add_module(Non_linear.Tanh())
encodage.add_module(Linear(100, 10))
encodage.add_module(Non_linear.Tanh())
# rn decodage
encodage.add_module(Linear(10, 100))
encodage.add_module(Non_linear.Tanh())
encodage.add_module(Linear(100, 256))
encodage.add_module(Non_linear.Sigmoide())
#rn decodage
# decodage = Sequential()
# decodage.add_module(Linear(10, 100))
# decodage.add_module(Non_linear.Tanh())
# decodage.add_module(Linear(100, 256))
# decodage.add_module(Non_linear.Sigmoide())
for i in range(maxIter):
#forward
# print(datax[0])
print(i)
encodage.forward(datax)
# print(encodage.forwards[-1][0])
encodage.backward(datax,datax,loss=BCE,gradient_step=0.1)
if i % 10 == 0:
# plt.figure()
# plt.imshow(datax[0].reshape(16, 16), cmap="gray")
# plt.title("Image original de 9: {}".format(datay[0]))
# plt.savefig("plot/num/origine9.png")
# plt.close()
plt.figure()
plt.imshow(encodage.forwards[-1][-10].reshape(16, 16), cmap="gray")
plt.title("Image apres autoEncoder de 6".format(datay[0]))
plt.savefig("plot/num/6_iter"+i.__str__()+".png")
plt.close()
return encodage.histLoss,"AutoEncoder",maxIter
#test**************************************
#init data
datax = np.random.randn(100,2)
datay = np.array([1 if datax[i][1] > np.sin(datax[i][0]) else 0 for i in range(100)])
# datay = np.random.choice([-1,1],100,replace=True)
# # datay = np.array([1 if datax[i,0]*datax[i,1]>0 else 0 for i in range(100)])
#
# print(datay)
# dataymulti = np.random.choice(range(10),20,replace=True)
# loss,titre,ite = testlinear(datax,datay)
# loss,titre,ite = testNonLinear(datax,datay)
# loss,titre,ite = testSequential(datax,datay)
# loss,titre,ite = testOptim(datax,datay)
# loss,titre,ite = testSGD(datax,datay)
loss,titre,ite = testSoftmax()
# loss,titre,ite = testAutoEncoder()
print(loss)
plt.plot([i for i in range(0,ite)],loss,color="red",linewidth="3")
plt.title(titre)
plt.xlabel("iteration")
plt.ylabel("loss")
plt.savefig("plot/"+titre)