|
| 1 | +# Copyright The Lightning AI team. |
| 2 | +# |
| 3 | +# Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | +# you may not use this file except in compliance with the License. |
| 5 | +# You may obtain a copy of the License at |
| 6 | +# |
| 7 | +# http://www.apache.org/licenses/LICENSE-2.0 |
| 8 | +# |
| 9 | +# Unless required by applicable law or agreed to in writing, software |
| 10 | +# distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | +# See the License for the specific language governing permissions and |
| 13 | +# limitations under the License. |
| 14 | +r""" |
| 15 | +Weight Averaging Callback |
| 16 | +^^^^^^^^^^^^^^^^^^^^^^^^^ |
| 17 | +""" |
| 18 | + |
| 19 | +import itertools |
| 20 | +from copy import deepcopy |
| 21 | +from typing import Any, Callable, Optional, Union |
| 22 | + |
| 23 | +import torch |
| 24 | +from torch import Tensor |
| 25 | +from torch.optim.swa_utils import AveragedModel |
| 26 | + |
| 27 | +import lightning.pytorch as pl |
| 28 | +from lightning.pytorch.callbacks.callback import Callback |
| 29 | +from lightning.pytorch.utilities.rank_zero import rank_zero_info, rank_zero_warn |
| 30 | +from lightning.pytorch.utilities.types import STEP_OUTPUT |
| 31 | + |
| 32 | + |
| 33 | +def _return_true(x: int) -> bool: |
| 34 | + return True |
| 35 | + |
| 36 | + |
| 37 | +def _return_false(x: int) -> bool: |
| 38 | + return False |
| 39 | + |
| 40 | + |
| 41 | +class WeightAveraging(Callback): |
| 42 | + r"""A callback that updates an averaged model for Stochastic Weight Averaging (SWA) or Exponential Moving Average |
| 43 | + (EMA) after each training step. |
| 44 | +
|
| 45 | + The user should provide either `update_on_step` or `update_on_epoch`, a function that determines when the average |
| 46 | + model should be updated. If neither function is provided, the average model will be updated after every optimizer |
| 47 | + step. |
| 48 | +
|
| 49 | + During validation and after the training finishes, the current model parameters will be replaced with the averaged |
| 50 | + values. |
| 51 | +
|
| 52 | + Args: |
| 53 | + device: If provided, the :class:`AveragedModel` will be stored on the ``device``. If ``None`` the device will be |
| 54 | + inferred from the original model. |
| 55 | + avg_fn: The averaging function used to update the parameters. The function must take in an |
| 56 | + :class:`AveragedModel` parameter, a current model parameter, and the number of models already averaged. If |
| 57 | + ``None``, an equally weighted average will be used. |
| 58 | + update_on_step: A function that takes the number of optimizer steps taken, and returns ``True`` if the average |
| 59 | + model should be updated. |
| 60 | + update_on_epoch: A function that takes the zero-based epoch number, and returns ``True`` if the average model |
| 61 | + should be updated. |
| 62 | +
|
| 63 | + """ |
| 64 | + |
| 65 | + def __init__( |
| 66 | + self, |
| 67 | + device: Optional[Union[torch.device, int]] = torch.device("cpu"), |
| 68 | + avg_fn: Optional[Callable[[Tensor, Tensor, Union[Tensor, int]], Tensor]] = None, |
| 69 | + update_on_step: Optional[Callable[[int], bool]] = None, |
| 70 | + update_on_epoch: Optional[Callable[[int], bool]] = None, |
| 71 | + ): |
| 72 | + self._device = device |
| 73 | + self._avg_fn = avg_fn |
| 74 | + |
| 75 | + if (update_on_step is None) and (update_on_epoch is None): |
| 76 | + self._update_on_step: Callable[[int], bool] = _return_true |
| 77 | + self._update_on_epoch: Callable[[int], bool] = _return_false |
| 78 | + else: |
| 79 | + self._update_on_step = _return_false if update_on_step is None else update_on_step |
| 80 | + self._update_on_epoch = _return_false if update_on_epoch is None else update_on_epoch |
| 81 | + |
| 82 | + self._average_model: Optional[AveragedModel] = None |
| 83 | + |
| 84 | + # Number of optimizer steps taken, when the average model was last updated. Initializing this with zero ensures |
| 85 | + # that the average model will be first updated after the first optimizer step, which takes place after N batches |
| 86 | + # when using accumulate_grad_batches=N. |
| 87 | + self._latest_update_step = 0 |
| 88 | + # The epoch after which the average model was last updated. The first epoch is 0, so initializing this to a |
| 89 | + # negative value means that if update_on_step(0) returns True, the first update is after the first epoch. |
| 90 | + self._latest_update_epoch = -1 |
| 91 | + |
| 92 | + def setup(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule", stage: str) -> None: |
| 93 | + """Called when fit, validate, test, predict, or tune begins. |
| 94 | +
|
| 95 | + Creates an :class:`AveragedModel` when fit begins. |
| 96 | +
|
| 97 | + Args: |
| 98 | + trainer: The current :class:`~lightning.pytorch.trainer.trainer.Trainer` instance. |
| 99 | + pl_module: The current :class:`~lightning.pytorch.core.LightningModule` instance. |
| 100 | + stage: The :class:`~lightning.pytorch.trainer.trainer.Trainer` state. |
| 101 | +
|
| 102 | + """ |
| 103 | + if stage == "fit": |
| 104 | + device = self._device or pl_module.device |
| 105 | + self._average_model = AveragedModel(model=pl_module, device=device, avg_fn=self._avg_fn, use_buffers=True) |
| 106 | + |
| 107 | + def on_train_batch_end( |
| 108 | + self, trainer: "pl.Trainer", pl_module: "pl.LightningModule", outputs: STEP_OUTPUT, batch: Any, batch_idx: int |
| 109 | + ) -> None: |
| 110 | + """Called when a training batch ends. |
| 111 | +
|
| 112 | + Updates the :class:`AveragedModel` parameters, if requested by ``update_on_step()``. |
| 113 | +
|
| 114 | + Args: |
| 115 | + trainer: The current :class:`~lightning.pytorch.trainer.trainer.Trainer` instance. |
| 116 | + pl_module: The current :class:`~lightning.pytorch.core.LightningModule` instance. |
| 117 | + outputs: Outputs from the training batch. |
| 118 | + batch: The training batch. |
| 119 | + batch_idx: Index of the training batch. |
| 120 | +
|
| 121 | + """ |
| 122 | + if self._update_on_step(trainer.global_step) and (trainer.global_step > self._latest_update_step): |
| 123 | + assert self._average_model is not None |
| 124 | + self._average_model.update_parameters(pl_module) |
| 125 | + self._latest_update_step = trainer.global_step |
| 126 | + |
| 127 | + def on_train_epoch_end(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule") -> None: |
| 128 | + """Called when a training epoch ends. |
| 129 | +
|
| 130 | + Updates the :class:`AveragedModel` parameters, if requested by ``update_on_epoch()``. |
| 131 | +
|
| 132 | + Args: |
| 133 | + trainer: The current :class:`~lightning.pytorch.trainer.trainer.Trainer` instance. |
| 134 | + pl_module: The current :class:`~lightning.pytorch.core.LightningModule` instance. |
| 135 | +
|
| 136 | + """ |
| 137 | + if self._update_on_epoch(trainer.current_epoch) and (trainer.current_epoch > self._latest_update_epoch): |
| 138 | + assert self._average_model is not None |
| 139 | + self._average_model.update_parameters(pl_module) |
| 140 | + self._latest_update_epoch = trainer.current_epoch |
| 141 | + |
| 142 | + def on_train_end(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule") -> None: |
| 143 | + """Called when training ends. |
| 144 | +
|
| 145 | + Transfers parameters from the :class:`AveragedModel` to the current model. |
| 146 | +
|
| 147 | + Args: |
| 148 | + trainer: The current :class:`~lightning.pytorch.trainer.trainer.Trainer` instance. |
| 149 | + pl_module: The current :class:`~lightning.pytorch.core.LightningModule` instance. |
| 150 | +
|
| 151 | + """ |
| 152 | + assert self._average_model is not None |
| 153 | + self._copy_average_to_current(pl_module) |
| 154 | + |
| 155 | + def on_validation_epoch_start(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule") -> None: |
| 156 | + """Called when a validation epoch begins. |
| 157 | +
|
| 158 | + Transfers parameter values from the :class:`AveragedModel` to the current model. |
| 159 | +
|
| 160 | + Args: |
| 161 | + trainer: The current :class:`~lightning.pytorch.trainer.trainer.Trainer` instance. |
| 162 | + pl_module: The current :class:`~lightning.pytorch.core.LightningModule` instance. |
| 163 | +
|
| 164 | + """ |
| 165 | + if self._average_model is not None: |
| 166 | + rank_zero_info("Loading the average model parameters for validation.") |
| 167 | + self._swap_models(pl_module) |
| 168 | + |
| 169 | + def on_validation_epoch_end(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule") -> None: |
| 170 | + """Called when a validation epoch ends. |
| 171 | +
|
| 172 | + Recovers the current model parameters from the :class:`AveragedModel`. |
| 173 | +
|
| 174 | + Args: |
| 175 | + trainer: The current :class:`~lightning.pytorch.trainer.trainer.Trainer` instance. |
| 176 | + pl_module: The current :class:`~lightning.pytorch.core.LightningModule` instance. |
| 177 | +
|
| 178 | + """ |
| 179 | + if self._average_model is not None: |
| 180 | + rank_zero_info("Recovering the current model parameters after validation.") |
| 181 | + self._swap_models(pl_module) |
| 182 | + |
| 183 | + def state_dict(self) -> dict[str, Any]: |
| 184 | + """Called when saving a checkpoint. |
| 185 | +
|
| 186 | + Creates a ``state_dict`` of the callback state. |
| 187 | +
|
| 188 | + Returns: |
| 189 | + A dictionary containing the callback state. |
| 190 | +
|
| 191 | + """ |
| 192 | + return {"latest_update_step": self._latest_update_step} |
| 193 | + |
| 194 | + def load_state_dict(self, state_dict: dict[str, Any]) -> None: |
| 195 | + """Called when loading a checkpoint. |
| 196 | +
|
| 197 | + Reloads the callback state given a ``state_dict``. |
| 198 | +
|
| 199 | + Args: |
| 200 | + state_dict: A dictionary containing the callback state. |
| 201 | +
|
| 202 | + """ |
| 203 | + self._latest_update_step = state_dict["latest_update_step"] |
| 204 | + |
| 205 | + def on_save_checkpoint( |
| 206 | + self, trainer: "pl.Trainer", pl_module: "pl.LightningModule", checkpoint: dict[str, Any] |
| 207 | + ) -> None: |
| 208 | + r"""Called when saving a checkpoint. |
| 209 | +
|
| 210 | + Moves the current model state to the key ``current_model_state``, and places the average model state in |
| 211 | + ``state_dict`` instead. Any other state variables of the ``AveragedModel`` will be saved in |
| 212 | + ``averaging_state``. |
| 213 | +
|
| 214 | + Args: |
| 215 | + trainer: The current :class:`~lightning.pytorch.trainer.trainer.Trainer` instance. |
| 216 | + pl_module: The current :class:`~lightning.pytorch.core.LightningModule` instance. |
| 217 | + checkpoint: The checkpoint dictionary that will be saved. |
| 218 | +
|
| 219 | + """ |
| 220 | + if self._average_model is None: |
| 221 | + raise Exception("Trying to save a checkpoint, but no average model (outside fit). Don't know what to do.") |
| 222 | + |
| 223 | + rank_zero_info("The average model parameters will be saved to the state_dict in the checkpoint.") |
| 224 | + average_model_state = self._average_model.state_dict() |
| 225 | + checkpoint["current_model_state"] = checkpoint["state_dict"] |
| 226 | + checkpoint["state_dict"] = { |
| 227 | + name[7:]: value for name, value in average_model_state.items() if name.startswith("module.") |
| 228 | + } |
| 229 | + checkpoint["averaging_state"] = { |
| 230 | + name: value for name, value in average_model_state.items() if not name.startswith("module.") |
| 231 | + } |
| 232 | + |
| 233 | + def on_load_checkpoint( |
| 234 | + self, trainer: "pl.Trainer", pl_module: "pl.LightningModule", checkpoint: dict[str, Any] |
| 235 | + ) -> None: |
| 236 | + r"""Called when loading a model checkpoint. |
| 237 | +
|
| 238 | + Loads the current model and the :class:`AveragedModel` parameters from the checkpoint. |
| 239 | +
|
| 240 | + Args: |
| 241 | + trainer: The current :class:`~lightning.pytorch.trainer.trainer.Trainer` instance. |
| 242 | + pl_module: The current :class:`~lightning.pytorch.core.LightningModule` instance. |
| 243 | + checkpoint: The full checkpoint dictionary that got loaded by the Trainer. |
| 244 | +
|
| 245 | + """ |
| 246 | + if self._average_model is None: |
| 247 | + raise Exception("Trying to load a checkpoint, but no average model (outside fit). Don't know what to do.") |
| 248 | + |
| 249 | + if ("current_model_state" in checkpoint) and ("averaging_state" in checkpoint): |
| 250 | + rank_zero_info("Found current_model_state in the checkpoint. This will be used to initialize the model.") |
| 251 | + average_model_state = {"module." + name: value for name, value in checkpoint["state_dict"].items()} |
| 252 | + average_model_state |= checkpoint["averaging_state"] |
| 253 | + self._average_model.load_state_dict(average_model_state) |
| 254 | + checkpoint["state_dict"] = checkpoint["current_model_state"] |
| 255 | + else: |
| 256 | + rank_zero_warn( |
| 257 | + "The checkpoint was not created with WeightAveraging. Both the current and the average model will be " |
| 258 | + "initialized with state_dict." |
| 259 | + ) |
| 260 | + self._average_model.module.load_state_dict(deepcopy(checkpoint["state_dict"]), strict=False) |
| 261 | + |
| 262 | + def _swap_models(self, pl_module: "pl.LightningModule") -> None: |
| 263 | + """Swaps the parameter values of the current model and the :class:`AveragedModel`. |
| 264 | +
|
| 265 | + Args: |
| 266 | + pl_module: The current :class:`~lightning.pytorch.core.LightningModule` instance. |
| 267 | +
|
| 268 | + """ |
| 269 | + assert self._average_model is not None |
| 270 | + average_params = itertools.chain(self._average_model.module.parameters(), self._average_model.module.buffers()) |
| 271 | + current_params = itertools.chain(pl_module.parameters(), pl_module.buffers()) |
| 272 | + for average_param, current_param in zip(average_params, current_params): |
| 273 | + tmp = average_param.data.clone() |
| 274 | + average_param.data.copy_(current_param.data) |
| 275 | + current_param.data.copy_(tmp) |
| 276 | + |
| 277 | + def _copy_average_to_current(self, pl_module: "pl.LightningModule") -> None: |
| 278 | + """Copies the parameter values from the :class:`AveragedModel` to the current model. |
| 279 | +
|
| 280 | + Args: |
| 281 | + pl_module: The current :class:`~lightning.pytorch.core.LightningModule` instance. |
| 282 | +
|
| 283 | + """ |
| 284 | + assert self._average_model is not None |
| 285 | + average_params = itertools.chain(self._average_model.module.parameters(), self._average_model.module.buffers()) |
| 286 | + current_params = itertools.chain(pl_module.parameters(), pl_module.buffers()) |
| 287 | + for average_param, current_param in zip(average_params, current_params): |
| 288 | + current_param.data.copy_(average_param.data) |
0 commit comments