Open
Description
I am running a model via the CLI interface and instantiating the Logger class using the class_path
and init_args
format. It works well when the parameters are explicitly defined in the __init__
method, but it does not work for parameters that are only provided as keyword arguments (kwargs). In the case of the NeptuneLogger
, the neptune_run_kwargs
parameters such as tags
raise an error during the instantiation of the logger.
What version are you seeing the problem on?
v2.0
How to reproduce the bug
python train.py fit -c config/model.yaml
The model.yaml
file looks like this:
trainer:
logger:
class_path: lightning.pytorch.loggers.NeptuneLogger
init_args:
project: "<project/name>"
tags:
- "mlp"
- "fast-dev"
Error messages and logs
train_embedseq.py: error: Parser key "trainer.logger":
Does not validate against any of the Union subtypes
Subtypes: (<class 'lightning.pytorch.loggers.logger.Logger'>, typing.Iterable[lightning.pytorch.loggers.logger.Logger], <class 'bool'>, <class 'NoneType'>)
Errors:
- Problem with the given class_path 'lightning.pytorch.loggers.NeptuneLogger':
'Configuration check failed :: No action for destination key "tags" to check its value.'
- Expected a <class 'collections.abc.Iterable'>
- Expected a <class 'bool'>
- Expected a <class 'NoneType'>
Given value type: <class 'jsonargparse.namespace.Namespace'>
Given value: Namespace(class_path='lightning.pytorch.loggers.NeptuneLogger', init_args=Namespace(api_key=None, project='verginer/nlpatent', name=None, log_model_checkpoints=True, prefix='mlp', tags=['embed-seq']))
Environment
No response
More info
No response