|
| 1 | +"""Test numerical stability of log-space local KDE likelihood computation. |
| 2 | +
|
| 3 | +This test verifies that computing local likelihood entirely in log-space |
| 4 | +prevents underflow issues that can occur when multiplying many small Gaussian |
| 5 | +values in linear space before taking the log. |
| 6 | +""" |
| 7 | + |
| 8 | +import jax |
| 9 | +import jax.numpy as jnp |
| 10 | +import numpy as np |
| 11 | +import pytest |
| 12 | + |
| 13 | +from non_local_detector.environment import Environment |
| 14 | +from non_local_detector.likelihoods.clusterless_kde_log import ( |
| 15 | + compute_local_log_likelihood, |
| 16 | + fit_clusterless_kde_encoding_model, |
| 17 | +) |
| 18 | +from non_local_detector.likelihoods.common import block_kde, block_log_kde, safe_log, EPS |
| 19 | + |
| 20 | + |
| 21 | +@pytest.fixture |
| 22 | +def extreme_feature_data(): |
| 23 | + """Generate synthetic data with extreme waveform features. |
| 24 | +
|
| 25 | + This creates conditions where linear-space computation would underflow: |
| 26 | + - High dimensional waveform features (8 dimensions) |
| 27 | + - Large feature distances (features far from encoding samples) |
| 28 | + - Small standard deviations (narrow Gaussians) |
| 29 | +
|
| 30 | + These conditions make the product of per-dimension Gaussians extremely small, |
| 31 | + causing underflow in linear space but handled correctly in log-space. |
| 32 | + """ |
| 33 | + np.random.seed(123) |
| 34 | + |
| 35 | + # Time and position |
| 36 | + n_time_pos = 500 |
| 37 | + position_time = np.linspace(0, 5, n_time_pos) |
| 38 | + position = np.linspace(0, 50, n_time_pos)[:, None] # 1D position |
| 39 | + |
| 40 | + # Spike data for 2 electrodes |
| 41 | + n_electrodes = 2 |
| 42 | + spike_times = [] |
| 43 | + spike_waveform_features = [] |
| 44 | + |
| 45 | + for i in range(n_electrodes): |
| 46 | + # Encoding spikes (training data) - moderate features |
| 47 | + n_enc_spikes = 40 |
| 48 | + enc_spike_times = np.sort( |
| 49 | + np.random.uniform(position_time[0], position_time[-1], n_enc_spikes) |
| 50 | + ) |
| 51 | + # Features centered around 0 |
| 52 | + enc_features = np.random.randn(n_enc_spikes, 8) * 5.0 |
| 53 | + |
| 54 | + # Decoding spikes (test data) - EXTREME features far from encoding |
| 55 | + n_dec_spikes = 20 |
| 56 | + dec_spike_times = np.sort(np.random.uniform(2.0, 3.0, n_dec_spikes)) |
| 57 | + # Features shifted far away from encoding data |
| 58 | + # This creates very small Gaussian values that underflow in linear space |
| 59 | + dec_features = np.random.randn(n_dec_spikes, 8) * 5.0 + 50.0 # Shifted by 50! |
| 60 | + |
| 61 | + # Combine encoding and decoding for storage |
| 62 | + all_times = np.concatenate([enc_spike_times, dec_spike_times]) |
| 63 | + all_features = np.concatenate([enc_features, dec_features], axis=0) |
| 64 | + |
| 65 | + spike_times.append(all_times) |
| 66 | + spike_waveform_features.append(all_features) |
| 67 | + |
| 68 | + return { |
| 69 | + "position_time": position_time, |
| 70 | + "position": position, |
| 71 | + "spike_times": spike_times, |
| 72 | + "spike_waveform_features": spike_waveform_features, |
| 73 | + "dec_time_range": (2.0, 3.0), # Time range where we have extreme features |
| 74 | + } |
| 75 | + |
| 76 | + |
| 77 | +@pytest.fixture |
| 78 | +def simple_1d_environment(): |
| 79 | + """Create a simple 1D environment for testing.""" |
| 80 | + env = Environment( |
| 81 | + environment_name="line", place_bin_size=5.0, position_range=((0.0, 50.0),) |
| 82 | + ) |
| 83 | + # Fit with dummy position |
| 84 | + dummy_pos = np.linspace(0.0, 50.0, 11)[:, None] |
| 85 | + env = env.fit_place_grid(position=dummy_pos, infer_track_interior=False) |
| 86 | + return env |
| 87 | + |
| 88 | + |
| 89 | +def test_local_likelihood_log_space_prevents_underflow( |
| 90 | + extreme_feature_data, simple_1d_environment |
| 91 | +): |
| 92 | + """Test that log-space local likelihood handles extreme features without underflow. |
| 93 | +
|
| 94 | + This test verifies that when decoding spikes have waveform features very far |
| 95 | + from encoding samples (causing underflow in linear-space computation), the |
| 96 | + log-space implementation still produces finite, reasonable results. |
| 97 | +
|
| 98 | + The test checks that: |
| 99 | + 1. All likelihood values are finite (no -inf from underflow) |
| 100 | + 2. The expected-counts term dominates (since spike term should be very negative) |
| 101 | + 3. The result is numerically stable across different random seeds |
| 102 | + """ |
| 103 | + data = extreme_feature_data |
| 104 | + env = simple_1d_environment |
| 105 | + |
| 106 | + # Fit encoding model |
| 107 | + enc_model = fit_clusterless_kde_encoding_model( |
| 108 | + position_time=data["position_time"], |
| 109 | + position=data["position"], |
| 110 | + spike_times=data["spike_times"], |
| 111 | + spike_waveform_features=data["spike_waveform_features"], |
| 112 | + environment=env, |
| 113 | + position_std=6.0, |
| 114 | + waveform_std=3.0, # Small std → narrow Gaussians → more underflow risk |
| 115 | + block_size=50, |
| 116 | + disable_progress_bar=True, |
| 117 | + ) |
| 118 | + |
| 119 | + # Decode on time window with extreme features |
| 120 | + dec_start, dec_end = data["dec_time_range"] |
| 121 | + time = np.linspace(dec_start, dec_end, 10) |
| 122 | + |
| 123 | + # Compute local likelihood |
| 124 | + ll_local = compute_local_log_likelihood( |
| 125 | + time=time, |
| 126 | + position_time=data["position_time"], |
| 127 | + position=data["position"], |
| 128 | + spike_times=data["spike_times"], |
| 129 | + spike_waveform_features=data["spike_waveform_features"], |
| 130 | + occupancy_model=enc_model["occupancy_model"], |
| 131 | + gpi_models=enc_model["gpi_models"], |
| 132 | + encoding_spike_waveform_features=enc_model["encoding_spike_waveform_features"], |
| 133 | + encoding_positions=enc_model["encoding_positions"], |
| 134 | + environment=env, |
| 135 | + mean_rates=jnp.array(enc_model["mean_rates"]), |
| 136 | + position_std=enc_model["position_std"], |
| 137 | + waveform_std=enc_model["waveform_std"], |
| 138 | + block_size=50, |
| 139 | + disable_progress_bar=True, |
| 140 | + ) |
| 141 | + |
| 142 | + # 1. All values should be finite (no -inf from underflow) |
| 143 | + assert np.all(np.isfinite(ll_local)), ( |
| 144 | + f"Local likelihood contains non-finite values: " |
| 145 | + f"min={np.min(ll_local)}, max={np.max(ll_local)}, " |
| 146 | + f"n_inf={np.sum(np.isinf(ll_local))}, n_nan={np.sum(np.isnan(ll_local))}" |
| 147 | + ) |
| 148 | + |
| 149 | + # 2. Values should be reasonable (negative, since log-likelihood) |
| 150 | + # With extreme features far from encoding data, spike contributions should be |
| 151 | + # very negative, so expected-counts term dominates |
| 152 | + assert np.all(ll_local < 0), "Log-likelihood should be negative" |
| 153 | + |
| 154 | + # 3. Should not saturate at LOG_EPS (which would indicate underflow) |
| 155 | + from non_local_detector.likelihoods.common import LOG_EPS |
| 156 | + |
| 157 | + # If underflow occurred, many values would equal LOG_EPS |
| 158 | + n_at_log_eps = np.sum(np.isclose(ll_local, LOG_EPS, rtol=0, atol=1e-10)) |
| 159 | + assert n_at_log_eps == 0, ( |
| 160 | + f"Log-likelihood saturated at LOG_EPS in {n_at_log_eps}/{ll_local.size} values, " |
| 161 | + f"indicating underflow in linear-space computation" |
| 162 | + ) |
| 163 | + |
| 164 | + # 4. Verify shape |
| 165 | + assert ll_local.shape == (len(time), 1), ( |
| 166 | + f"Expected shape ({len(time)}, 1), got {ll_local.shape}" |
| 167 | + ) |
| 168 | + |
| 169 | + |
| 170 | +def test_local_likelihood_log_space_moderate_features( |
| 171 | + extreme_feature_data, simple_1d_environment |
| 172 | +): |
| 173 | + """Test that log-space local likelihood works correctly with moderate features. |
| 174 | +
|
| 175 | + This is a sanity check that the log-space implementation doesn't break |
| 176 | + normal cases where linear-space would have worked fine. |
| 177 | + """ |
| 178 | + data = extreme_feature_data |
| 179 | + env = simple_1d_environment |
| 180 | + |
| 181 | + # Modify data to have moderate features (not extreme) |
| 182 | + moderate_spike_features = [ |
| 183 | + np.random.randn(len(times), 8) * 5.0 # No shift, moderate scale |
| 184 | + for times in data["spike_times"] |
| 185 | + ] |
| 186 | + |
| 187 | + # Fit encoding model |
| 188 | + enc_model = fit_clusterless_kde_encoding_model( |
| 189 | + position_time=data["position_time"], |
| 190 | + position=data["position"], |
| 191 | + spike_times=data["spike_times"], |
| 192 | + spike_waveform_features=moderate_spike_features, |
| 193 | + environment=env, |
| 194 | + position_std=6.0, |
| 195 | + waveform_std=10.0, # Larger std → less risk of underflow |
| 196 | + block_size=50, |
| 197 | + disable_progress_bar=True, |
| 198 | + ) |
| 199 | + |
| 200 | + # Decode on time window |
| 201 | + time = np.linspace(1.0, 2.0, 10) |
| 202 | + |
| 203 | + # Compute local likelihood |
| 204 | + ll_local = compute_local_log_likelihood( |
| 205 | + time=time, |
| 206 | + position_time=data["position_time"], |
| 207 | + position=data["position"], |
| 208 | + spike_times=data["spike_times"], |
| 209 | + spike_waveform_features=moderate_spike_features, |
| 210 | + occupancy_model=enc_model["occupancy_model"], |
| 211 | + gpi_models=enc_model["gpi_models"], |
| 212 | + encoding_spike_waveform_features=enc_model["encoding_spike_waveform_features"], |
| 213 | + encoding_positions=enc_model["encoding_positions"], |
| 214 | + environment=env, |
| 215 | + mean_rates=jnp.array(enc_model["mean_rates"]), |
| 216 | + position_std=enc_model["position_std"], |
| 217 | + waveform_std=enc_model["waveform_std"], |
| 218 | + block_size=50, |
| 219 | + disable_progress_bar=True, |
| 220 | + ) |
| 221 | + |
| 222 | + # All values should be finite and reasonable |
| 223 | + assert np.all(np.isfinite(ll_local)), "Local likelihood should be finite" |
| 224 | + assert np.all(ll_local < 0), "Log-likelihood should be negative" |
| 225 | + assert ll_local.shape == (len(time), 1), "Shape should be correct" |
| 226 | + |
| 227 | + |
| 228 | +def test_block_log_kde_vs_log_block_kde(): |
| 229 | + """Test that block_log_kde is more accurate than safe_log(block_kde). |
| 230 | +
|
| 231 | + This directly tests the numerical difference between: |
| 232 | + 1. Linear-space: marginal = block_kde(...); log_marginal = safe_log(marginal) |
| 233 | + 2. Log-space: log_marginal = block_log_kde(...) |
| 234 | +
|
| 235 | + With extreme feature distances, (1) suffers from underflow and produces |
| 236 | + inaccurate results (clamped to LOG_EPS), while (2) computes accurately. |
| 237 | + """ |
| 238 | + np.random.seed(456) |
| 239 | + |
| 240 | + # Create test data with VERY extreme feature distances |
| 241 | + n_eval = 10 |
| 242 | + n_samples = 20 |
| 243 | + n_dims = 10 # High dimensional |
| 244 | + |
| 245 | + # Evaluation points FAR from samples |
| 246 | + eval_points = np.random.randn(n_eval, n_dims) * 5.0 + 100.0 # Shifted by 100! |
| 247 | + |
| 248 | + # Samples centered at origin |
| 249 | + samples = np.random.randn(n_samples, n_dims) * 5.0 # Near zero |
| 250 | + |
| 251 | + # Small standard deviations → very narrow Gaussians → underflow in linear space |
| 252 | + std = np.ones(n_dims) * 1.0 |
| 253 | + |
| 254 | + # Method 1: Linear-space then log (current implementation) |
| 255 | + marginal_linear = block_kde(eval_points, samples, std, block_size=5) |
| 256 | + log_marginal_linear = safe_log(marginal_linear, eps=EPS) |
| 257 | + |
| 258 | + # Method 2: Pure log-space (proposed implementation) |
| 259 | + log_marginal_log = block_log_kde(eval_points, samples, std, block_size=5) |
| 260 | + |
| 261 | + # Check that linear-space method has underflow (values exactly at LOG_EPS) |
| 262 | + from non_local_detector.likelihoods.common import LOG_EPS |
| 263 | + |
| 264 | + # With extreme distances, marginal_linear should underflow to exactly 0 |
| 265 | + assert np.all(marginal_linear == 0), ( |
| 266 | + f"Expected all marginal_linear values to underflow to 0, " |
| 267 | + f"but got min={np.min(marginal_linear)}, max={np.max(marginal_linear)}" |
| 268 | + ) |
| 269 | + |
| 270 | + # Which safe_log clamps to exactly LOG_EPS |
| 271 | + assert np.all(log_marginal_linear == LOG_EPS), ( |
| 272 | + f"Expected all log_marginal_linear values to be clamped to LOG_EPS={LOG_EPS}, " |
| 273 | + f"but got values: {np.unique(log_marginal_linear)}" |
| 274 | + ) |
| 275 | + |
| 276 | + # Log-space method should compute much more negative (accurate) values |
| 277 | + assert np.all(log_marginal_log < LOG_EPS), ( |
| 278 | + f"Log-space values should be more negative than LOG_EPS={LOG_EPS}, " |
| 279 | + f"but got min={np.min(log_marginal_log)}, max={np.max(log_marginal_log)}" |
| 280 | + ) |
| 281 | + |
| 282 | + # The difference should be substantial (thousands in log-space) |
| 283 | + min_diff = np.min(log_marginal_log - LOG_EPS) |
| 284 | + assert min_diff < -1000, ( |
| 285 | + f"Expected large difference (< -1000) between log-space and clamped linear-space, " |
| 286 | + f"but got min_diff={min_diff:.2f}" |
| 287 | + ) |
0 commit comments