99## Features
1010
1111- ** Flexible Track Representation** : Define any 2D track structure using NetworkX graphs
12+ - ** Pre-Built Track Geometries** : 8+ track builders for common experimental setups (T-maze, circular, figure-8, etc.)
1213- ** HMM-Based Classification** : Optional temporal continuity for robust segment classification
1314- ** Edge Merging** : Treat different spatial paths as equivalent behavioral segments
1415- ** Automatic Layout Inference** : Smart edge ordering and spacing for intuitive linearization
16+ - ** Interactive Track Builder** : Create tracks from images with mouse clicks (Jupyter-compatible)
17+ - ** Validation & Quality Control** : Confidence scoring, outlier detection, and comprehensive quality assessment
1518- ** Visualization Tools** : Plot tracks in 2D and linearized 1D representations
1619
1720## Installation
@@ -330,7 +333,7 @@ This project is licensed under the MIT License - see the LICENSE file for detail
330333
331334## Learning Resources
332335
333- ### Tutorial Notebook
336+ ### Tutorial Notebooks
334337📚 ** [ Interactive Tutorial] ( notebooks/track_linearization_tutorial.ipynb ) ** - A comprehensive, pedagogically-designed notebook covering:
335338- Simple to complex track examples (linear, L-shaped, circular, W-track)
336339- Edge mapping for behavioral analysis (T-maze example)
@@ -339,6 +342,13 @@ This project is licensed under the MIT License - see the LICENSE file for detail
339342
340343Perfect for scientists new to the package or computational spatial analysis!
341344
345+ 🔧 ** [ Advanced Features Tutorial] ( notebooks/advanced_features_tutorial.ipynb ) ** - Learn about new features in v2.4+:
346+ - Pre-built track geometries (T-maze, plus maze, figure-8, etc.)
347+ - Validation & quality control for linearization
348+ - Interactive track builder from images (Jupyter-compatible)
349+ - Outlier detection and confidence scoring
350+ - Real-world analysis workflows
351+
342352## Support
343353
344354- ** Issues** : Report bugs or request features via [ GitHub Issues] ( https://github.com/LorenFrankLab/track_linearization/issues )
0 commit comments