Skip to content

LuoXubo/FastMatch

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 Cannot retrieve latest commit at this time.

History

15 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

FastMatch

How fast can image matching be?

Table of Contents

1. Introduction

This repository aims to combine the fastest feature extraction and matching methods, i.e. XFeat and LightGlue, and evaluate their performance on laptop and service devices.

2. Installation

2.1. Clone the repository

git clone https://github.com/LuoXubo/FastMatch.git

2.2. Install dependencies

conda create -n fastmatch python=3.8 -y
conda activate fastmatch
pip install -r requirements.txt

3. Usage

See demo.ipynb for a quick start.

4. Results

4.1 Time Comparison

  • Test device: Ubuntu 20.04, RTX 3090 Ti
  • Test image size: 800x600
Method Feature Extraction Matching Total Time
SP + LG 0.06s 0.02s 0.08s
Efficient LoFTR - - 0.063s
XFeat + mnn (sparse) 0.016s 0.0007s 0.0167s
XFeat + mnn (semi-dense) 0.17s 0.007 0.177s

4.2 Video Matching

  • Test device: Ubuntu 20.04, RTX 3090 Ti
  • Test video size: 1280x720, 30fps, shot by iPhone 13
  • Test video length: 12s

XFeat + mnn

video

SuperPoint + LightGlue

video

Efficient LoFTR

video

Usage:

python video_matching.py --ref=assets/groot/groot.jpg --tgt=assets/groot/groot.mp4 --method=sp+lg --save_path=assets/groot/groot_sp+lg.mp4

5. Thanks To

6. License

This project is licensed under the MIT License - see the LICENSE.md file for details.