Skip to content

Commit 8c3b8d4

Browse files
author
Documenter.jl
committed
build based on 888cae9
1 parent 76684ea commit 8c3b8d4

File tree

284 files changed

+36160
-0
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

284 files changed

+36160
-0
lines changed

previews/PR1656/404.html

Lines changed: 32 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,32 @@
1+
<!DOCTYPE html>
2+
<html lang="en-US" dir="ltr">
3+
<head>
4+
<meta charset="utf-8">
5+
<meta name="viewport" content="width=device-width,initial-scale=1">
6+
<title>404 | Lux.jl Docs</title>
7+
<meta name="description" content="Not Found">
8+
<meta name="generator" content="VitePress v1.6.4">
9+
<link rel="preload stylesheet" href="/previews/PR1656/assets/style.DnowIBHB.css" as="style">
10+
<link rel="preload stylesheet" href="/previews/PR1656/vp-icons.css" as="style">
11+
12+
<script type="module" src="/previews/PR1656/assets/app.BsL67t7J.js"></script>
13+
<link rel="preload" href="/previews/PR1656/assets/inter-roman-latin.Di8DUHzh.woff2" as="font" type="font/woff2" crossorigin="">
14+
<script async src="https://www.googletagmanager.com/gtag/js?id=G-Q8GYTEVTZ2"></script>
15+
<script>window.dataLayer=window.dataLayer||[];function gtag(){dataLayer.push(arguments)}gtag("js",new Date),gtag("config","G-Q8GYTEVTZ2");</script>
16+
<link rel="apple-touch-icon" sizes="180x180" href="/apple-touch-icon.png">
17+
<link rel="icon" type="image/png" sizes="32x32" href="/favicon-32x32.png">
18+
<link rel="icon" type="image/png" sizes="16x16" href="/favicon-16x16.png">
19+
<link rel="icon" href="/favicon.ico">
20+
<link rel="manifest" href="/site.webmanifest">
21+
<link rel="icon" href="REPLACE_ME_DOCUMENTER_VITEPRESS_FAVICON">
22+
<script src="/versions.js"></script>
23+
<script src="/previews/PR1656/siteinfo.js"></script>
24+
<script id="check-dark-mode">(()=>{const e=localStorage.getItem("vitepress-theme-appearance")||"auto",a=window.matchMedia("(prefers-color-scheme: dark)").matches;(!e||e==="auto"?a:e==="dark")&&document.documentElement.classList.add("dark")})();</script>
25+
<script id="check-mac-os">document.documentElement.classList.toggle("mac",/Mac|iPhone|iPod|iPad/i.test(navigator.platform));</script>
26+
</head>
27+
<body>
28+
<div id="app"></div>
29+
<script>window.__VP_HASH_MAP__=JSON.parse("{\"api_accelerator_support_mldatadevices.md\":\"DSlDBDpW\",\"api_building_blocks_luxcore.md\":\"D94khVXC\",\"api_building_blocks_weightinitializers.md\":\"g8Cz1s0M\",\"api_lux_autodiff.md\":\"BrjlOd20\",\"api_lux_contrib.md\":\"DQUGRQVO\",\"api_lux_distributed_utils.md\":\"DaNyeC_8\",\"api_lux_interop.md\":\"BCXBkVbU\",\"api_lux_layers.md\":\"B96_bEjT\",\"api_lux_serialization.md\":\"ag7lJDLX\",\"api_lux_utilities.md\":\"CILEycr9\",\"api_nn_primitives_activationfunctions.md\":\"pWTfITLN\",\"api_nn_primitives_luxlib.md\":\"CxSIBJeN\",\"api_nn_primitives_nnlib.md\":\"D2L8Np-N\",\"api_testing_functionality_luxtestutils.md\":\"B1RSsyL3\",\"index.md\":\"DZk_F3fL\",\"introduction_citation.md\":\"v-L4D4ae\",\"introduction_index.md\":\"CUlh-eXl\",\"introduction_overview.md\":\"CxY9iPX7\",\"introduction_resources.md\":\"D-T0ArXc\",\"introduction_updating_to_v1.md\":\"CYH6lDWg\",\"manual_autodiff.md\":\"DWUlOpCn\",\"manual_compiling_lux_models.md\":\"Cpwtud2e\",\"manual_debugging.md\":\"BFdiTete\",\"manual_dispatch_custom_input.md\":\"DhRn_QC2\",\"manual_distributed_utils.md\":\"kI_WiL5e\",\"manual_exporting_to_jax.md\":\"BdZih-uT\",\"manual_flux_lux_interop.md\":\"BO7FMxmx\",\"manual_freezing_model_parameters.md\":\"DumpAQ3T\",\"manual_gpu_management.md\":\"DUiIv8qy\",\"manual_interface.md\":\"BcmXiY1q\",\"manual_migrate_from_flux.md\":\"BSKu6bs3\",\"manual_nested_autodiff.md\":\"ClIPnTTT\",\"manual_performance_pitfalls.md\":\"gCcjZgtI\",\"manual_preferences.md\":\"CuSJBLG-\",\"manual_profiling_training_loop.md\":\"CmKG1hf_\",\"manual_visualize_lux_models.md\":\"Dqy4JjDz\",\"manual_weight_initializers.md\":\"CHIpY0pV\",\"references.md\":\"mvd58V5m\",\"tutorials_advanced_1_gravitationalwaveform.md\":\"CFqOgCKI\",\"tutorials_advanced_2_ddim.md\":\"flOW6WLG\",\"tutorials_advanced_3_imagenet.md\":\"o--UXUU7\",\"tutorials_advanced_4_qwen3.md\":\"DESbyU5e\",\"tutorials_beginner_1_basics.md\":\"BfxI8P-J\",\"tutorials_beginner_2_polynomialfitting.md\":\"CAIS4Kz2\",\"tutorials_beginner_3_simplernn.md\":\"DCO_u6sQ\",\"tutorials_beginner_4_simplechains.md\":\"DTTDtZIK\",\"tutorials_beginner_5_optimizationintegration.md\":\"Cl961B-s\",\"tutorials_index.md\":\"BXVOLWHt\",\"tutorials_intermediate_10_cifar10_simple_cnn.md\":\"Bl8MtRBL\",\"tutorials_intermediate_11_cifar10_resnet20.md\":\"B-bByzvM\",\"tutorials_intermediate_1_neuralode.md\":\"Dm4PoDW6\",\"tutorials_intermediate_2_bayesiannn.md\":\"CkIaBGY8\",\"tutorials_intermediate_3_hypernet.md\":\"BNBqzb55\",\"tutorials_intermediate_4_pinn2dpde.md\":\"BAqpU_W5\",\"tutorials_intermediate_5_convolutionalvae.md\":\"CzQBYGt1\",\"tutorials_intermediate_6_gcn_cora.md\":\"g1uSRRFM\",\"tutorials_intermediate_7_realnvp.md\":\"DxOFQa1d\",\"tutorials_intermediate_8_lstmencoderdecoder.md\":\"Ca1iHRIb\",\"tutorials_intermediate_9_cifar10_conv_mixer.md\":\"DDnhspVN\"}");window.__VP_SITE_DATA__=JSON.parse("{\"lang\":\"en-US\",\"dir\":\"ltr\",\"title\":\"Lux.jl Docs\",\"description\":\"Documentation for LuxDL Repositories\",\"base\":\"/previews/PR1656/\",\"head\":[],\"router\":{\"prefetchLinks\":true},\"appearance\":true,\"themeConfig\":{\"outline\":\"deep\",\"logo\":{\"light\":\"/lux-logo.svg\",\"dark\":\"/lux-logo-dark.svg\"},\"search\":{\"provider\":\"local\",\"options\":{\"detailedView\":true}},\"nav\":[{\"text\":\"Home\",\"link\":\"/\"},{\"text\":\"Getting Started\",\"link\":\"/introduction\"},{\"text\":\"Tutorials\",\"link\":\"/tutorials/\"},{\"text\":\"Manual\",\"link\":\"/manual/interface\"},{\"text\":\"API\",\"items\":[{\"text\":\"Lux\",\"items\":[{\"text\":\"Built-In Layers\",\"link\":\"/api/Lux/layers\"},{\"text\":\"Automatic Differentiation\",\"link\":\"/api/Lux/autodiff\"},{\"text\":\"Utilities\",\"link\":\"/api/Lux/utilities\"},{\"text\":\"Experimental\",\"link\":\"/api/Lux/contrib\"},{\"text\":\"InterOp\",\"link\":\"/api/Lux/interop\"},{\"text\":\"DistributedUtils\",\"link\":\"/api/Lux/distributed_utils\"},{\"text\":\"Serialization\",\"link\":\"/api/Lux/serialization\"}]},{\"text\":\"Accelerator Support\",\"items\":[{\"text\":\"MLDataDevices\",\"link\":\"/api/Accelerator_Support/MLDataDevices\"}]},{\"text\":\"NN Primitives\",\"items\":[{\"text\":\"LuxLib\",\"link\":\"/api/NN_Primitives/LuxLib\"},{\"text\":\"NNlib\",\"link\":\"/api/NN_Primitives/NNlib\"},{\"text\":\"Activation Functions\",\"link\":\"/api/NN_Primitives/ActivationFunctions\"}]},{\"text\":\"Building Blocks\",\"items\":[{\"text\":\"LuxCore\",\"link\":\"/api/Building_Blocks/LuxCore\"},{\"text\":\"WeightInitializers\",\"link\":\"/api/Building_Blocks/WeightInitializers\"}]},{\"text\":\"Testing Functionality\",\"items\":[{\"text\":\"LuxTestUtils\",\"link\":\"/api/Testing_Functionality/LuxTestUtils\"}]}]},{\"component\":\"VersionPicker\"}],\"sidebar\":{\"/introduction/\":{\"text\":\"Getting Started\",\"collapsed\":false,\"items\":[{\"text\":\"Introduction\",\"link\":\"/introduction\"},{\"text\":\"Overview\",\"link\":\"/introduction/overview\"},{\"text\":\"Resources\",\"link\":\"/introduction/resources\"},{\"text\":\"Updating to v1\",\"link\":\"/introduction/updating_to_v1\"},{\"text\":\"Citation\",\"link\":\"/introduction/citation\"}]},\"/tutorials/\":{\"text\":\"Tutorials\",\"collapsed\":false,\"items\":[{\"text\":\"Overview\",\"link\":\"/tutorials/\"},{\"text\":\"Beginner\",\"collapsed\":false,\"items\":[{\"text\":\"Julia & Lux for the Uninitiated\",\"link\":\"/tutorials/beginner/1_Basics\"},{\"text\":\"Fitting a Polynomial using MLP\",\"link\":\"/tutorials/beginner/2_PolynomialFitting\"},{\"text\":\"Training a Simple LSTM\",\"link\":\"/tutorials/beginner/3_SimpleRNN\"},{\"text\":\"MNIST Classification with SimpleChains\",\"link\":\"/tutorials/beginner/4_SimpleChains\"},{\"text\":\"Fitting with Optimization.jl\",\"link\":\"/tutorials/beginner/5_OptimizationIntegration\"}]},{\"text\":\"Intermediate\",\"collapsed\":false,\"items\":[{\"text\":\"MNIST Classification using Neural ODEs\",\"link\":\"/tutorials/intermediate/1_NeuralODE\"},{\"text\":\"Training a HyperNetwork on MNIST and FashionMNIST\",\"link\":\"/tutorials/intermediate/3_HyperNet\"},{\"text\":\"Training a PINN on 2D PDE\",\"link\":\"/tutorials/intermediate/4_PINN2DPDE\"},{\"text\":\"Convolutional VAE for MNIST\",\"link\":\"/tutorials/intermediate/5_ConvolutionalVAE\"},{\"text\":\"Graph Convolutional Network on Cora\",\"link\":\"/tutorials/intermediate/6_GCN_Cora\"},{\"text\":\"Normalizing Flows for Density Estimation\",\"link\":\"/tutorials/intermediate/7_RealNVP\"},{\"text\":\"LSTM Encoder-Decoder\",\"link\":\"/tutorials/intermediate/8_LSTMEncoderDecoder\"},{\"text\":\"Conv-Mixer on CIFAR-10\",\"link\":\"/tutorials/intermediate/9_CIFAR10_conv_mixer\"},{\"text\":\"Simple CNN on CIFAR-10\",\"link\":\"/tutorials/intermediate/10_CIFAR10_simple_cnn\"},{\"text\":\"ResNet20 on CIFAR-10\",\"link\":\"/tutorials/intermediate/11_CIFAR10_resnet20\"}]},{\"text\":\"Advanced\",\"collapsed\":false,\"items\":[{\"text\":\"Neural ODE for Model Gravitational Waveforms\",\"link\":\"/tutorials/advanced/1_GravitationalWaveForm\"},{\"text\":\"Training a Image Diffusion Model\",\"link\":\"/tutorials/advanced/2_DDIM\"},{\"text\":\"Distributed Data Parallel ImageNet Training\",\"link\":\"/tutorials/advanced/3_ImageNet\"},{\"text\":\"Text Generation with Qwen-3\",\"link\":\"/tutorials/advanced/4_Qwen3\"}]},{\"text\":\"3rd Party Tutorials\",\"collapsed\":true,\"items\":[{\"text\":\"PINNs (NeuralPDE.jl)\",\"link\":\"https://docs.sciml.ai/NeuralPDE/stable/tutorials/pdesystem/\"},{\"text\":\"UDEs (SciMLSensitivity.jl)\",\"link\":\"https://docs.sciml.ai/SciMLSensitivity/stable/tutorials/data_parallel/\"},{\"text\":\"Neural DEs (DiffEqFlux.jl)\",\"link\":\"https://docs.sciml.ai/DiffEqFlux/stable/examples/neural_ode/\"},{\"text\":\"DEQs (DeepEquilibriumNetworks.jl)\",\"link\":\"https://docs.sciml.ai/DeepEquilibriumNetworks/stable/tutorials/basic_mnist_deq/\"},{\"text\":\"Medical Image Segmentation\",\"link\":\"https://github.com/Dale-Black/ComputerVisionTutorials.jl/\"},{\"text\":\"Neural Closure Models\",\"link\":\"https://github.com/agdestein/NeuralClosureTutorials/\"}]}]},\"/manual/\":{\"text\":\"Manual\",\"collapsed\":false,\"items\":[{\"text\":\"Basics\",\"items\":[{\"text\":\"Lux Interface\",\"link\":\"/manual/interface\"},{\"text\":\"Freezing Parameters\",\"link\":\"/manual/freezing_model_parameters\"},{\"text\":\"GPU Management\",\"link\":\"/manual/gpu_management\"},{\"text\":\"Initializing Weights\",\"link\":\"/manual/weight_initializers\"},{\"text\":\"Visualizing Lux Models\",\"link\":\"/manual/visualize_lux_models\"}]},{\"text\":\"Reactant Compilation\",\"items\":[{\"text\":\"Compiling Lux Models\",\"link\":\"/manual/compiling_lux_models\"},{\"text\":\"Exporting Lux Models to Jax\",\"link\":\"/manual/exporting_to_jax\"},{\"text\":\"Profiling Lux Training Loops\",\"link\":\"/manual/profiling_training_loop\"}]},{\"text\":\"Automatic Differentiation\",\"items\":[{\"text\":\"Automatic Differentiation\",\"link\":\"/manual/autodiff\"},{\"text\":\"Nested AutoDiff\",\"link\":\"/manual/nested_autodiff\"}]},{\"text\":\"Debugging / Performance Enhancement Tools\",\"items\":[{\"text\":\"Debugging Lux Models\",\"link\":\"/manual/debugging\"},{\"text\":\"Performance Pitfalls\",\"link\":\"/manual/performance_pitfalls\"}]},{\"text\":\"Migration Guides\",\"items\":[{\"text\":\"Migrating from Flux\",\"link\":\"/manual/migrate_from_flux\"},{\"text\":\"Maintaining both Lux and Flux Interfaces\",\"link\":\"/manual/flux_lux_interop\"}]},{\"text\":\"Advanced Usage\",\"items\":[{\"text\":\"Custom Input Types\",\"link\":\"/manual/dispatch_custom_input\"},{\"text\":\"Configuration via Preferences\",\"link\":\"/manual/preferences\"},{\"text\":\"Distributed Training\",\"link\":\"/manual/distributed_utils\"}]}]},\"/api/\":{\"text\":\"API Reference\",\"collapsed\":false,\"items\":[{\"text\":\"Lux\",\"collapsed\":false,\"items\":[{\"text\":\"Built-In Layers\",\"link\":\"/api/Lux/layers\"},{\"text\":\"Automatic Differentiation\",\"link\":\"/api/Lux/autodiff\"},{\"text\":\"Utilities\",\"link\":\"/api/Lux/utilities\"},{\"text\":\"Experimental Features\",\"link\":\"/api/Lux/contrib\"},{\"text\":\"Interoperability\",\"link\":\"/api/Lux/interop\"},{\"text\":\"DistributedUtils\",\"link\":\"/api/Lux/distributed_utils\"},{\"text\":\"Serialization\",\"link\":\"/api/Lux/serialization\"}]},{\"text\":\"Accelerator Support\",\"collapsed\":false,\"items\":[{\"text\":\"MLDataDevices\",\"link\":\"/api/Accelerator_Support/MLDataDevices\"}]},{\"text\":\"NN Primitives\",\"collapsed\":false,\"items\":[{\"text\":\"LuxLib\",\"link\":\"/api/NN_Primitives/LuxLib\"},{\"text\":\"NNlib\",\"link\":\"/api/NN_Primitives/NNlib\"},{\"text\":\"Activation Functions\",\"link\":\"/api/NN_Primitives/ActivationFunctions\"}]},{\"text\":\"Building Blocks\",\"collapsed\":false,\"items\":[{\"text\":\"LuxCore\",\"link\":\"/api/Building_Blocks/LuxCore\"},{\"text\":\"WeightInitializers\",\"link\":\"/api/Building_Blocks/WeightInitializers\"}]},{\"text\":\"Testing Functionality\",\"collapsed\":false,\"items\":[{\"text\":\"LuxTestUtils\",\"link\":\"/api/Testing_Functionality/LuxTestUtils\"}]}]}},\"editLink\":{\"pattern\":\"https://github.com/LuxDL/Lux.jl/edit/main/docs/src/:path\",\"text\":\"Edit this page on GitHub\"},\"socialLinks\":[{\"icon\":\"github\",\"link\":\"https://github.com/LuxDL/Lux.jl\"},{\"icon\":\"twitter\",\"link\":\"https://twitter.com/avikpal1410\"},{\"icon\":\"slack\",\"link\":\"https://julialang.org/slack/\"}],\"footer\":{\"message\":\"Made with <a href=\\\"https://documenter.juliadocs.org/stable/\\\" target=\\\"_blank\\\"><strong>Documenter.jl</strong></a>, <a href=\\\"https://vitepress.dev\\\" target=\\\"_blank\\\"><strong>VitePress</strong></a> and <a href=\\\"https://luxdl.github.io/DocumenterVitepress.jl/stable\\\" target=\\\"_blank\\\"><strong>DocumenterVitepress.jl</strong></a><br>Released under the MIT License. Powered by the <a href=\\\"https://www.julialang.org\\\">Julia Programming Language</a>.<br>\",\"copyright\":\"© Copyright 2026 Avik Pal.\"},\"lastUpdated\":{\"text\":\"Updated at\",\"formatOptions\":{\"dateStyle\":\"full\",\"timeStyle\":\"medium\"}},\"metaChunk\":true,\"mpa\":true},\"locales\":{},\"scrollOffset\":134,\"cleanUrls\":true}");</script>
30+
31+
</body>
32+
</html>

previews/PR1656/api/Accelerator_Support/MLDataDevices.html

Lines changed: 69 additions & 0 deletions
Large diffs are not rendered by default.

previews/PR1656/api/Building_Blocks/LuxCore.html

Lines changed: 36 additions & 0 deletions
Large diffs are not rendered by default.

previews/PR1656/api/Building_Blocks/WeightInitializers.html

Lines changed: 86 additions & 0 deletions
Large diffs are not rendered by default.

previews/PR1656/api/Lux/autodiff.html

Lines changed: 35 additions & 0 deletions
Large diffs are not rendered by default.

previews/PR1656/api/Lux/contrib.html

Lines changed: 89 additions & 0 deletions
Large diffs are not rendered by default.

previews/PR1656/api/Lux/distributed_utils.html

Lines changed: 38 additions & 0 deletions
Large diffs are not rendered by default.

previews/PR1656/api/Lux/interop.html

Lines changed: 66 additions & 0 deletions
Large diffs are not rendered by default.

previews/PR1656/api/Lux/layers.html

Lines changed: 231 additions & 0 deletions
Large diffs are not rendered by default.

previews/PR1656/api/Lux/serialization.html

Lines changed: 69 additions & 0 deletions
Large diffs are not rendered by default.

0 commit comments

Comments
 (0)