|
| 1 | +using ADTypes, Optimisers, Enzyme |
| 2 | + |
| 3 | +include("../../shared_testsetup.jl") |
| 4 | + |
| 5 | +@testset "Training API Enzyme Runtime Mode" begin |
| 6 | + if !LuxTestUtils.ENZYME_TESTING_ENABLED[] |
| 7 | + @test_broken false |
| 8 | + return nothing |
| 9 | + end |
| 10 | + |
| 11 | + function makemodel(n) |
| 12 | + @compact(dense = Dense(n => 1; use_bias=true), b = ones(Float32, n)) do x |
| 13 | + @return dense(x .+ b) |
| 14 | + end |
| 15 | + end |
| 16 | + |
| 17 | + n_samples = 20 |
| 18 | + x_dim = 10 |
| 19 | + y_dim = 1 |
| 20 | + |
| 21 | + model = makemodel(x_dim) |
| 22 | + rng = Random.default_rng() |
| 23 | + ps, st = Lux.setup(rng, model) |
| 24 | + |
| 25 | + W = randn(rng, Float32, y_dim, x_dim) |
| 26 | + b = randn(rng, Float32, y_dim) |
| 27 | + |
| 28 | + x_samples = randn(rng, Float32, x_dim, n_samples) |
| 29 | + y_samples = W * x_samples .+ b .+ 0.01f0 .* randn(rng, Float32, y_dim, n_samples) |
| 30 | + |
| 31 | + lossfn = MSELoss() |
| 32 | + |
| 33 | + function train_model!(model, ps, st, opt, nepochs::Int) |
| 34 | + tstate = Training.TrainState(model, ps, st, opt) |
| 35 | + for i in 1:nepochs |
| 36 | + grads, loss, _, tstate = Training.single_train_step!( |
| 37 | + AutoEnzyme(; mode=set_runtime_activity(Reverse)), |
| 38 | + lossfn, |
| 39 | + (x_samples, y_samples), |
| 40 | + tstate, |
| 41 | + ) |
| 42 | + end |
| 43 | + return tstate.model, tstate.parameters, tstate.states |
| 44 | + end |
| 45 | + |
| 46 | + initial_loss = lossfn(first(model(x_samples, ps, st)), y_samples) |
| 47 | + |
| 48 | + model, ps, st = train_model!(model, ps, st, Descent(0.01f0), 10000) |
| 49 | + |
| 50 | + final_loss = lossfn(first(model(x_samples, ps, st)), y_samples) |
| 51 | + |
| 52 | + @test final_loss * 100 < initial_loss |
| 53 | +end |
| 54 | + |
| 55 | +@testset "Enzyme: Invalidate Cache on State Update" begin |
| 56 | + if !LuxTestUtils.ENZYME_TESTING_ENABLED[] |
| 57 | + @test_broken false |
| 58 | + return nothing |
| 59 | + end |
| 60 | + |
| 61 | + mse = MSELoss() |
| 62 | + |
| 63 | + function mse2(model, ps, st, (x, y)) |
| 64 | + z, st = model(x, ps, st) |
| 65 | + return sum(abs2, z .- y), st, () |
| 66 | + end |
| 67 | + |
| 68 | + rng = StableRNG(12345) |
| 69 | + |
| 70 | + model = Chain(Dense(4 => 3), VariationalHiddenDropout(0.5f0), Dense(3 => 4)) |
| 71 | + ps, st = Lux.setup(rng, model) |
| 72 | + x = randn(rng, Float32, 4, 32) |
| 73 | + opt = Adam(0.001f0) |
| 74 | + |
| 75 | + tstate = Training.TrainState(model, ps, st, opt) |
| 76 | + |
| 77 | + _, _, _, tstate_new = Training.compute_gradients(AutoEnzyme(), mse, (x, x), tstate) |
| 78 | + |
| 79 | + @test tstate_new.states !== tstate.states |
| 80 | + |
| 81 | + model = Chain(Dense(4 => 3), Dense(3 => 4)) |
| 82 | + ps, st = Lux.setup(rng, model) |
| 83 | + |
| 84 | + tstate = Training.TrainState(model, ps, st, opt) |
| 85 | + |
| 86 | + _, _, _, tstate_new = Training.compute_gradients(AutoEnzyme(), mse, (x, x), tstate) |
| 87 | + |
| 88 | + @test @inferred(Training.compute_gradients(AutoEnzyme(), mse, (x, x), tstate_new)) isa |
| 89 | + Any |
| 90 | + |
| 91 | + _, _, _, tstate_new2 = Training.compute_gradients( |
| 92 | + AutoEnzyme(), mse2, (x, x), tstate_new |
| 93 | + ) |
| 94 | + @test hasfield(typeof(tstate_new2.cache.extras), :forward) |
| 95 | + @test hasfield(typeof(tstate_new2.cache.extras), :reverse) |
| 96 | + |
| 97 | + rng = StableRNG(12345) |
| 98 | + |
| 99 | + model = Chain(Dense(4 => 3), VariationalHiddenDropout(0.5f0), Dense(3 => 4)) |
| 100 | + ps, st = Lux.setup(rng, model) |
| 101 | + x = randn(rng, Float32, 4, 32) |
| 102 | + opt = Adam(0.001f0) |
| 103 | + |
| 104 | + tstate = Training.TrainState(model, ps, st, opt) |
| 105 | + |
| 106 | + _, _, _, tstate_new = Training.compute_gradients(AutoEnzyme(), mse, (x, x), tstate) |
| 107 | + |
| 108 | + @test tstate_new.states !== tstate.states |
| 109 | + |
| 110 | + model = Chain(Dense(4 => 3), Dense(3 => 4)) |
| 111 | + ps, st = Lux.setup(rng, model) |
| 112 | + |
| 113 | + tstate = Training.TrainState(model, ps, st, opt) |
| 114 | + |
| 115 | + _, _, _, tstate_new = Training.compute_gradients(AutoEnzyme(), mse, (x, x), tstate) |
| 116 | + |
| 117 | + @test @inferred(Training.compute_gradients(AutoEnzyme(), mse, (x, x), tstate_new)) isa |
| 118 | + Any |
| 119 | + |
| 120 | + _, _, _, tstate_new2 = Training.compute_gradients( |
| 121 | + AutoEnzyme(), mse2, (x, x), tstate_new |
| 122 | + ) |
| 123 | + @test hasfield(typeof(tstate_new2.cache.extras), :forward) |
| 124 | + @test hasfield(typeof(tstate_new2.cache.extras), :reverse) |
| 125 | +end |
0 commit comments