You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
| 1.5.x | ACV Backend <br> | A new way of estimating Shapley values using ACV. [More info about ACV here](https://github.com/salimamoukou/acv00). |[<imgsrc="https://raw.githubusercontent.com/MAIF/shapash/master/docs/_static/wheel.png"width="50"title="wheel-acv-backend">](tutorial/explainer/tuto-expl03-Shapash-acv-backend.ipynb)|
33
+
| 1.6.x | Explainability Quality Metrics <br> | Evaluate the relevance of your explainability using 3 metrics: **Stability**, **Consistency** and **Compacity**|[<imgsrc="https://raw.githubusercontent.com/MAIF/shapash/master/docs/_static/quality-metrics.png"width="50"title="quality-metrics">](https://github.com/MAIF/shapash/blob/master/tutorial/explainability_quality/tuto-quality01-Builing-confidence-explainability.ipynb)|
34
+
| 1.5.x | ACV Backend <br> | A new way of estimating Shapley values using ACV. [More info about ACV here](https://towardsdatascience.com/the-right-way-to-compute-your-shapley-values-cfea30509254). |[<imgsrc="https://raw.githubusercontent.com/MAIF/shapash/master/docs/_static/wheel.png"width="50"title="wheel-acv-backend">](tutorial/explainer/tuto-expl03-Shapash-acv-backend.ipynb)|
38
35
| 1.4.x | Groups of features <br> [demo](https://shapash-demo2.ossbymaif.fr/)| You can now regroup features that share common properties together. <br>This option can be useful if your model has a lot of features. |[<imgsrc="https://raw.githubusercontent.com/MAIF/shapash/master/docs/_static/groups_features.gif"width="120"title="groups-features">](https://github.com/MAIF/shapash/blob/master/tutorial/common/tuto-common01-groups_of_features.ipynb)|
39
36
| 1.3.x | Shapash Report <br> [demo](https://shapash.readthedocs.io/en/latest/report.html)| A standalone HTML report that constitutes a basis of an audit document. |[<imgsrc="https://raw.githubusercontent.com/MAIF/shapash/master/docs/_static/report-icon.png"width="50"title="shapash-report">](https://github.com/MAIF/shapash/blob/master/tutorial/report/tuto-shapash-report01.ipynb)|
40
37
@@ -55,14 +52,26 @@ Shapash also contributes to data science auditing by displaying usefull informat
55
52
-[Model auditability - Towards DS](https://towardsdatascience.com/shapash-1-3-2-announcing-new-features-for-more-auditable-ai-64a6db71c919)
56
53
-[Group of features - Towards AI](https://pub.towardsai.net/machine-learning-6011d5d9a444)
@@ -99,7 +108,9 @@ Shapash also contributes to data science auditing by displaying usefull informat
99
108
100
109
-**Summarize and export** the local explanation
101
110
> **Shapash** proposes a short and clear local explanation. It allows each user, whatever their Data background, to understand a local prediction of a supervised model thanks to a summarized and explicit explanation
102
-
111
+
112
+
113
+
-**Evaluate** the quality of your explainability using different metrics
103
114
104
115
- Easily share and discuss results with non-Data users
105
116
@@ -236,14 +247,12 @@ This github repository offers a lot of tutorials to allow you to start more conc
236
247
-[Use **Lime** to compute local explanation, Summarize-it with **Shapash**](tutorial/explainer/tuto-expl02-Shapash-Viz-using-Lime-contributions.ipynb)
237
248
-[Use **ACV backend** to compute Active Shapley Values and SDP global importance](tutorial/explainer/tuto-expl03-Shapash-acv-backend.ipynb)
238
249
250
+
### Evaluate the quality of your explainability
251
+
-[Building confidence on explainability methods using **Stability**, **Consistency** and **Compacity** metrics](tutorial/explainability_quality/tuto-quality01-Builing-confidence-explainability.ipynb)
252
+
239
253
### Generate the Shapash Report
240
254
-[Generate a standalone HTML report of your project with generate_report](tutorial/report/tuto-shapash-report01.ipynb)
241
255
242
256
### Deploy local explainability in production
243
257
-[Deploy local explainability in production_with_SmartPredictor](tutorial/predictor/tuto-smartpredictor-introduction-to-SmartPredictor.ipynb)
0 commit comments