Skip to content

Commit 6cee49d

Browse files
authored
bump dependencies (#621)
* bump dependencies * changelog
1 parent 7263a48 commit 6cee49d

9 files changed

+56
-83
lines changed

CHANGELOG.rst

+12-11
Original file line numberDiff line numberDiff line change
@@ -23,28 +23,29 @@ Breaking changes
2323
By `Mathias Hauser`_.
2424
- The supported versions of some dependencies were changed
2525
(`#399 <https://github.com/MESMER-group/mesmer/pull/399>`_,
26-
`#405 <https://github.com/MESMER-group/mesmer/pull/405>`_, and
27-
`#503 <https://github.com/MESMER-group/mesmer/pull/503>`_):
26+
`#405 <https://github.com/MESMER-group/mesmer/pull/405>`_,
27+
`#503 <https://github.com/MESMER-group/mesmer/pull/503>`_, and
28+
`#621 <https://github.com/MESMER-group/mesmer/pull/621>`_):
2829

2930
================= ============= =========
3031
Package Old New
3132
================= ============= =========
3233
**cartopy** not specified 0.22
33-
**dask** not specified 2023.8
34+
**dask** not specified 2024.3
3435
**joblib** not specified 1.3
3536
**netcdf4** not specified 1.6
36-
**numpy** not specified 1.24
37-
**packaging** not specified 23.1
38-
**pandas** 2.0 no change
39-
**pooch** not specified 1.7
37+
**numpy** not specified 1.25
38+
**packaging** not specified 24.0
39+
**pandas** 2.0 2.2
40+
**pooch** not specified 1.8
4041
**properscoring** not specified 0.1
4142
**pyproj** not specified 3.6
42-
**regionmask** 0.8 0.10
43-
**scikit-learn** not specified 1.3
44-
**scipy** not specified 1.11
43+
**regionmask** 0.8 0.11
44+
**scikit-learn** not specified 1.4
45+
**scipy** not specified 1.12
4546
**shapely** not specified 2.0
4647
**statsmodels** not specified 0.14
47-
**xarray** 2023.04 2023.7
48+
**xarray** 2023.04 2024.2
4849
================= ============= =========
4950

5051
Deprecations

ci/requirements/min-all-deps.yml

+10-10
Original file line numberDiff line numberDiff line change
@@ -7,23 +7,23 @@ channels:
77
dependencies:
88
- python=3.10
99
- cartopy=0.22
10-
- dask=2023.8
10+
- dask=2024.3
1111
- joblib=1.3
1212
- netcdf4=1.6
13-
- numpy=1.24
14-
- packaging=23.1
15-
- pandas=2.0
16-
- pooch=1.7
13+
- numpy=1.25
14+
- packaging=24.0
15+
- pandas=2.2
16+
- pooch=1.8
1717
- properscoring=0.1
1818
- pyproj=3.6
19-
- regionmask=0.10
20-
- scikit-learn=1.3
21-
- scipy=1.11
19+
- regionmask=0.11
20+
- scikit-learn=1.4
21+
- scipy=1.12
2222
- shapely=2.0
2323
- statsmodels=0.14
24-
- xarray=2023.7
24+
- xarray=2024.2
2525
- xarray-datatree=0.0.13
26-
- pip=23.1
26+
- pip=24.0
2727
- pip:
2828
- filefisher==1.0.1
2929
# for testing

mesmer/core/_data.py

+1-3
Original file line numberDiff line numberDiff line change
@@ -3,7 +3,6 @@
33
import pandas as pd
44
import pooch
55
import xarray as xr
6-
from packaging.version import Version
76

87
import mesmer
98

@@ -48,8 +47,7 @@ def _load_aod_obs(*, version, resample):
4847
aod = xr.DataArray(df.aod.values, coords={"time": time}, name="aod")
4948

5049
if resample:
51-
freq = "YE" if Version(xr.__version__) >= Version("2024.02") else "A"
52-
aod = aod.resample(time=freq).mean()
50+
aod = aod.resample(time="YE").mean()
5351

5452
return aod
5553

mesmer/core/utils.py

+1-5
Original file line numberDiff line numberDiff line change
@@ -2,9 +2,7 @@
22
from collections.abc import Callable, Iterable
33

44
import numpy as np
5-
import pandas as pd
65
import xarray as xr
7-
from packaging.version import Version
86

97

108
class OptimizeWarning(UserWarning):
@@ -139,9 +137,7 @@ def upsample_yearly_data(
139137
)
140138

141139
# make sure monthly and yearly data both start at the beginning of the period
142-
# pandas v2.2 changed the time freq string for year
143-
freq = "AS" if Version(pd.__version__) < Version("2.2") else "YS"
144-
year = yearly_data.resample({time_dim: freq}).bfill()
140+
year = yearly_data.resample({time_dim: "YS"}).bfill()
145141
month = monthly_time.resample({time_dim: "MS"}).bfill()
146142

147143
# forward fill yearly values to monthly resolution

setup.cfg

+9-9
Original file line numberDiff line numberDiff line change
@@ -32,21 +32,21 @@ zip_safe = False # https://mypy.readthedocs.io/en/latest/installed_packages.htm
3232
include_package_data = True
3333
python_requires = >=3.10
3434
install_requires =
35-
dask[array,distributed] >=2023.8
35+
dask[array,distributed] >=2024.3
3636
filefisher >=1.0.1
3737
joblib >=1.3
3838
netcdf4 >=1.6
39-
numpy >=1.24
40-
packaging >=23.1
41-
pandas >=2.0
42-
pooch >=1.7
39+
numpy >=1.25
40+
packaging >=24.0
41+
pandas >=2.2
42+
pooch >=1.8
4343
properscoring >=0.1
4444
pyproj >=3.6
45-
regionmask >=0.9
46-
scikit-learn >=1.3 # only for the tests
47-
scipy >=1.11
45+
regionmask >=0.11
46+
scikit-learn >=1.4 # only for the tests
47+
scipy >=1.12
4848
statsmodels >=0.14
49-
xarray >=2023.07, < 2024.10 # upper pin for xarray-datatree
49+
xarray >=2024.2, <2024.10 # upper pin for xarray-datatree
5050
xarray-datatree ==0.0.13
5151

5252
[options.extras_require]

tests/unit/test_auto_regression.py

+3-4
Original file line numberDiff line numberDiff line change
@@ -5,7 +5,6 @@
55
import pytest
66
import xarray as xr
77
from datatree import DataTree, map_over_subtree
8-
from packaging.version import Version
98

109
import mesmer
1110
from mesmer.core.utils import LinAlgWarning, _check_dataarray_form, _check_dataset_form
@@ -738,7 +737,7 @@ def test_fit_autoregression_monthly_np_with_noise(slope, intercept, std):
738737

739738

740739
def test_fit_auto_regression_monthly():
741-
freq = "ME" if Version(pd.__version__) >= Version("2.2") else "M"
740+
freq = "ME"
742741
n_years = 20
743742
n_gridcells = 10
744743
rng = np.random.default_rng(seed=0)
@@ -835,7 +834,7 @@ def test_draw_autoregression_monthly_np_rng():
835834

836835
@pytest.mark.parametrize("seed", [0, xr.Dataset({"seed": 0})])
837836
def test_draw_auto_regression_monthly(seed):
838-
freq = "ME" if Version(pd.__version__) >= Version("2.2") else "M"
837+
freq = "ME"
839838

840839
n_gridcells = 10
841840
n_realisations = 5
@@ -895,7 +894,7 @@ def test_draw_auto_regression_monthly_dt():
895894
}
896895
)
897896

898-
freq = "ME" if Version(pd.__version__) >= Version("2.2") else "M"
897+
freq = "ME"
899898

900899
n_gridcells = 10
901900
n_realisation = 5

tests/unit/test_data.py

+1-4
Original file line numberDiff line numberDiff line change
@@ -1,7 +1,6 @@
11
import numpy as np
22
import pandas as pd
33
import xarray as xr
4-
from packaging.version import Version
54

65
from mesmer.core._data import load_stratospheric_aerosol_optical_depth_obs
76

@@ -10,9 +9,7 @@ def test_load_stratospheric_aerosol_optical_depth_data():
109

1110
aod = load_stratospheric_aerosol_optical_depth_obs(version="2022", resample=True)
1211

13-
freq = "YE" if Version(pd.__version__) >= Version("2.2") else "A"
14-
15-
time = pd.date_range("1850", "2023", freq=freq)
12+
time = pd.date_range("1850", "2023", freq="YE")
1613
time = xr.DataArray(time, dims="time", coords={"time": time})
1714

1815
xr.testing.assert_equal(aod.time, time)

tests/unit/test_harmonic_model.py

+6-13
Original file line numberDiff line numberDiff line change
@@ -2,7 +2,6 @@
22
import pandas as pd
33
import pytest
44
import xarray as xr
5-
from packaging.version import Version
65

76
import mesmer
87
from mesmer.core.utils import _check_dataarray_form
@@ -41,8 +40,7 @@ def test_generate_fourier_series_np():
4140
def test_predict_harmonic_model():
4241
n_years = 10
4342
n_lat, n_lon, n_gridcells = 2, 3, 2 * 3
44-
freq = "AS" if Version(pd.__version__) < Version("2.2") else "YS"
45-
time = xr.cftime_range(start="2000-01-01", periods=n_years, freq=freq)
43+
time = xr.cftime_range(start="2000-01-01", periods=n_years, freq="YS")
4644
yearly_predictor = xr.DataArray(
4745
np.zeros((n_years, n_gridcells)), dims=["time", "cells"], coords={"time": time}
4846
)
@@ -143,9 +141,8 @@ def test_fit_harmonic_model():
143141
"time", "cells"
144142
)
145143

146-
freq = "AS" if Version(pd.__version__) < Version("2.2") else "YS"
147144
yearly_predictor["time"] = xr.cftime_range(
148-
start="2000-01-01", periods=n_ts, freq=freq
145+
start="2000-01-01", periods=n_ts, freq="YS"
149146
)
150147

151148
time = xr.cftime_range(start="2000-01-01", periods=n_ts * 12, freq="MS")
@@ -211,11 +208,9 @@ def test_fit_harmonic_model_checks():
211208
with pytest.raises(TypeError):
212209
mesmer.stats.fit_harmonic_model(yearly_predictor, monthly_target.values) # type: ignore[arg-type]
213210

214-
freq = "YE" if Version(pd.__version__) >= Version("2.2") else "Y"
215-
yearly_predictor["time"] = pd.date_range("2000-01-01", periods=10, freq=freq)
211+
yearly_predictor["time"] = pd.date_range("2000-01-01", periods=10, freq="YE")
216212

217-
freq = "ME" if Version(pd.__version__) >= Version("2.2") else "M"
218-
monthly_target["time"] = pd.date_range("2000-02-01", periods=10 * 12, freq=freq)
213+
monthly_target["time"] = pd.date_range("2000-02-01", periods=10 * 12, freq="ME")
219214
with pytest.raises(ValueError, match="Monthly target data must start with January"):
220215
mesmer.stats.fit_harmonic_model(yearly_predictor, monthly_target)
221216

@@ -225,11 +220,9 @@ def test_fit_harmonic_model_time_dim():
225220
yearly_predictor = trend_data_2D(n_timesteps=10, n_lat=3, n_lon=2)
226221
monthly_target = trend_data_2D(n_timesteps=10 * 12, n_lat=3, n_lon=2)
227222

228-
freq = "YE" if Version(pd.__version__) >= Version("2.2") else "Y"
229-
yearly_predictor["time"] = pd.date_range("2000-01-01", periods=10, freq=freq)
223+
yearly_predictor["time"] = pd.date_range("2000-01-01", periods=10, freq="YE")
230224

231-
freq = "ME" if Version(pd.__version__) >= Version("2.2") else "M"
232-
monthly_target["time"] = pd.date_range("2000-01-01", periods=10 * 12, freq=freq)
225+
monthly_target["time"] = pd.date_range("2000-01-01", periods=10 * 12, freq="ME")
233226

234227
time_dim = "dates"
235228
monthly_target = monthly_target.rename({"time": time_dim})

tests/unit/test_utils.py

+13-24
Original file line numberDiff line numberDiff line change
@@ -2,17 +2,16 @@
22
import pandas as pd
33
import pytest
44
import xarray as xr
5-
from packaging.version import Version
65

76
import mesmer.core.utils
87

98

109
def make_dummy_yearly_data(freq, calendar="standard"):
10+
11+
# NOTE: "YM" is a made-up "Year-Middle" freq string
1112
if freq == "YM":
12-
freq = "AS-JUL" if Version(pd.__version__) < Version("2.2") else "YS-JUL"
13-
time = xr.date_range(
14-
start="2000", periods=5, freq=freq, calendar=calendar
15-
) + pd.Timedelta("14d")
13+
time = xr.date_range(start="2000", periods=5, freq="YS-JUL", calendar=calendar)
14+
time = time + pd.Timedelta("14d")
1615
else:
1716
time = xr.date_range(start="2000", periods=5, freq=freq, calendar=calendar)
1817

@@ -21,31 +20,25 @@ def make_dummy_yearly_data(freq, calendar="standard"):
2120

2221

2322
def make_dummy_monthly_data(freq, calendar="standard"):
23+
24+
start = "2000-01"
25+
periods = 5 * 12
26+
27+
# NOTE: "MM" is a made-up "Month-Middle" freq string
2428
if freq == "MM":
25-
time = time = xr.date_range(
26-
start="2000", periods=5 * 12, freq="MS", calendar=calendar
27-
) + pd.Timedelta("14d")
29+
time = xr.date_range(start=start, periods=periods, freq="MS", calendar=calendar)
30+
time = time + pd.Timedelta("14d")
2831
else:
29-
time = xr.date_range(
30-
start="2000-01", periods=5 * 12, freq=freq, calendar=calendar
31-
)
32+
time = xr.date_range(start=start, periods=periods, freq=freq, calendar=calendar)
3233

33-
data = xr.DataArray(np.ones(5 * 12), dims=("time"), coords={"time": time})
34+
data = xr.DataArray(np.arange(periods), dims=("time"), coords={"time": time})
3435
return data
3536

3637

3738
@pytest.mark.parametrize("freq_y", ["YM", "YS", "YE", "YS-JUL", "YS-NOV"])
3839
@pytest.mark.parametrize("freq_m", ["MM", "MS", "ME"])
3940
@pytest.mark.parametrize("calendar", ["standard", "gregorian", "365_day"])
4041
def test_upsample_yearly_data(freq_y, freq_m, calendar):
41-
if Version(pd.__version__) < Version("2.2"):
42-
if freq_y == "YE":
43-
freq_y = freq_y.replace("YE", "A")
44-
elif "YS" in freq_y:
45-
freq_y = freq_y.replace("YS", "AS")
46-
47-
if freq_m == "ME":
48-
freq_m = freq_m.replace("ME", "M")
4942

5043
yearly_data = make_dummy_yearly_data(freq_y, calendar=calendar)
5144
monthly_data = make_dummy_monthly_data(freq_m, calendar=calendar)
@@ -295,10 +288,6 @@ def _get_time(*args, **kwargs):
295288
calendar = kwargs.pop("calendar", "standard")
296289
freq = kwargs.pop("freq", None)
297290

298-
# translate freq strings
299-
if freq and Version(xr.__version__) < Version("2024.02"):
300-
freq = freq.replace("YE", "A").replace("ME", "M")
301-
302291
time = xr.date_range(*args, calendar=calendar, freq=freq, **kwargs)
303292

304293
return xr.DataArray(time, dims="time")

0 commit comments

Comments
 (0)