-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathe03_3b_getKepRR_hist.m
47 lines (36 loc) · 1.39 KB
/
e03_3b_getKepRR_hist.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
clearvars
addpath('./mfiles')
indTRes = [5, 15, 30]; % Hist order: top-to-down
indNoise = [2, 4, 6]; % Hist order: left-to-right
doPlot = true;
vMax = 1;
vMin = 0;
if doPlot
figure('Position',[300 300 900 500])
end
for i=1:length(indNoise)
for j=1:length(indTRes)
curFile = ['Downsample-Noise-' num2str(indNoise(i)) '-TRes-' num2str(indTRes(j)) '.mat'];
load(fullfile('./data/mapDownsample/CERRM',curFile));
estKepRR = pkERRM(:,5); % All of the kepRR estimate from ERRM
% Get number of imaginary estimates
isImag = imag(estKepRR) ~= 0;
numImag(i,j) = sum(isImag);
% Get number of negative estimates
estKepRR = estKepRR(~isImag);
numNegative(i,j) = sum(estKepRR<0);
% Get the interquartile mean of positive real kepRR estimates
kepRR(i,j) = iqrMean(estKepRR(estKepRR>0));
if doPlot
vMask = estKepRR>vMin & estKepRR<vMax;
subplot(length(indTRes),length(indNoise),i+length(indNoise)*(j-1))
histogram(estKepRR,40,'BinLimits',[vMin vMax])
end
end
end
% Display the percent of fits which were negative or complex
% These were annotated onto the figure afterwards
disp('Percent of fits which were negative')
disp(100*numNegative./length(isImag))
disp('Percent of fits which were complex')
disp(100*numImag./length(isImag))