-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathimgsNPZ.py
41 lines (31 loc) · 1.01 KB
/
imgsNPZ.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
import numpy as np
from keras.preprocessing.image import load_img
from keras.preprocessing.image import img_to_array
import glob
imgDim = 256
colorMode = "grayscale"
colorChannels = 1
imgDir = '/images_cropped/**/*.jpg'
outputFile = '/ASD.npz'
imgCount = 0
for file in glob.iglob(imgDir, recursive=True):
imgCount = imgCount + 1
print("Number of images:", imgCount)
X = np.zeros((imgCount, imgDim, imgDim, colorChannels), dtype=np.uint8)
y = np.zeros((imgCount, 1), dtype=np.uint8)
for i, imgFile in enumerate(glob.iglob(imgDir, recursive=True)):
#print(imgFile)
img = load_img(imgFile, color_mode=colorMode, target_size=(imgDim, imgDim))
img = img_to_array(img)
X[i] = img
label = None
if "neg" in imgFile:
label = 0
elif "pos" in imgFile:
label = 1
y[i] = label
print("X shape:", X.shape)
print("y shape:", y.shape)
X = (X / 255.0) #Normalization
#Saving all into compressed Numpy array
np.savez_compressed(outputFile, X=X, y=y)