-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathmatrix_transpose.cpp
238 lines (197 loc) · 7.13 KB
/
matrix_transpose.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
#include <iostream>
#include <iomanip>
#include <fstream>
#include "seal/seal.h"
#include "helper.h"
using namespace std;
using namespace seal;
void MatrixTranspose(size_t poly_modulus_degree, int dimension)
{
// Handle Rotation Error First
if (dimension > poly_modulus_degree / 4)
{
cerr << "Dimension is too large. Choose a dimension less than " << poly_modulus_degree / 4 << endl;
exit(1);
}
EncryptionParameters params(scheme_type::ckks);
params.set_poly_modulus_degree(poly_modulus_degree);
cout << "MAX BIT COUNT: " << CoeffModulus::MaxBitCount(poly_modulus_degree) << endl;
params.set_coeff_modulus(CoeffModulus::Create(poly_modulus_degree, {60, 40, 40, 40, 40, 60}));
SEALContext context(params);
auto tmp = make_shared<SEALContext>(context);
// Generate keys, encryptor, decryptor and evaluator
KeyGenerator keygen(context);
PublicKey pk;
keygen.create_public_key(pk);
SecretKey sk = keygen.secret_key();
GaloisKeys gal_keys;
keygen.create_galois_keys(gal_keys);
RelinKeys relin_keys;
keygen.create_relin_keys(relin_keys);
Encryptor encryptor(context, pk);
Evaluator evaluator(context);
Decryptor decryptor(context, sk);
// Create CKKS encoder
CKKSEncoder ckks_encoder(context);
// Create Scale
double scale = pow(2.0, 40);
int dimensionSq = pow(dimension, 2);
// Create input matrix
vector<vector<double>> pod_matrix1_set1(dimension, vector<double>(dimension));
// Fill input matrices
// double r = ((double)rand() / (RAND_MAX));
double filler = 1;
// Matrix 1
for (int i = 0; i < dimension; i++)
{
for (int j = 0; j < dimension; j++)
{
pod_matrix1_set1[i][j] = filler;
filler++;
// r = ((double)rand() / (RAND_MAX));
}
}
cout << "Matrix 1:" << endl;
print_full_matrix(pod_matrix1_set1, 0);
// Get U_tranposed
vector<vector<double>> U_transposed = get_U_transpose(pod_matrix1_set1);
cout << "\nU_tranposed:" << endl;
print_full_matrix(U_transposed, 0);
// Get diagonals for U_transposed
vector<vector<double>> U_transposed_diagonals = get_all_diagonals(U_transposed);
// Test ADD EPSILON
double epsilon = 0.00000001;
for (int i = 0; i < dimensionSq; i++)
{
for (int j = 0; j < dimensionSq; j++)
{
U_transposed_diagonals[i][j] += epsilon;
}
}
// --------------- ENCODING ----------------
// Encode U_transposed_diagonals
vector<Plaintext> U_transposed_diagonals_plain(dimensionSq);
cout << "\nEncoding U_tranposed_diagonals...";
for (int i = 0; i < dimensionSq; i++)
{
ckks_encoder.encode(U_transposed_diagonals[i], scale, U_transposed_diagonals_plain[i]);
}
cout << "Done" << endl;
// Encode Matrix 1
vector<Plaintext> plain_matrix1_set1(dimension);
cout << "\nEncoding Matrix 1...";
for (int i = 0; i < dimension; i++)
{
ckks_encoder.encode(pod_matrix1_set1[i], scale, plain_matrix1_set1[i]);
}
cout << "Done" << endl;
// --------------- ENCRYPTING ----------------
// Encrypt Matrix 1
vector<Ciphertext> cipher_matrix1_set1(dimension);
cout << "\nEncrypting Matrix 1...";
for (int i = 0; i < dimension; i++)
{
encryptor.encrypt(plain_matrix1_set1[i], cipher_matrix1_set1[i]);
}
cout << "Done" << endl;
// --------------- MATRIX ENCODING ----------------
// Matrix Encode Matrix 1
cout << "\nMatrix Encoding Matrix 1...";
Ciphertext cipher_encoded_matrix1_set1 = C_Matrix_Encode(cipher_matrix1_set1, gal_keys, evaluator);
cout << "Done" << endl;
// --------------- MATRIX TRANSPOSING ----------------
cout << "\nMatrix Transposition...";
Ciphertext ct_result = Linear_Transform_Plain(cipher_encoded_matrix1_set1, U_transposed_diagonals_plain, gal_keys, params);
cout << "Done" << endl;
// --------------- DECRYPT ----------------
Plaintext pt_result;
cout << "\nResult Decrypt...";
decryptor.decrypt(ct_result, pt_result);
cout << "Done" << endl;
// --------------- DECODE ----------------
vector<double> result_matrix;
cout << "\nResult Decode...";
ckks_encoder.decode(pt_result, result_matrix);
cout << "Done" << endl;
// print_partial_vector(result_matrix, result_matrix.size());
cout << "Resulting matrix: ";
for (int i = 0; i < dimensionSq; i++)
{
if (i % dimension == 0)
{
cout << "\n\t";
}
cout << result_matrix[i] << ", ";
}
cout << endl;
// Test Matrix DECODE
cout << "\nMATRIX DECODING... ";
vector<Ciphertext> ct_decoded_vec = C_Matrix_Decode(ct_result, dimension, scale, gal_keys, ckks_encoder, evaluator);
cout << "Done" << endl;
// DECRYPT and DECODE
vector<Plaintext> pt_decoded_vec(dimension);
for (int i = 0; i < dimension; i++)
{
decryptor.decrypt(ct_decoded_vec[i], pt_decoded_vec[i]);
vector<double> decoded_vec;
ckks_encoder.decode(pt_decoded_vec[i], decoded_vec);
cout << "\t[";
for (int j = 0; j < dimension; j++)
{
cout << decoded_vec[j] << ", ";
}
cout << "]" << endl;
}
// Dummy Diagonal test
cout << "\n----------------DUMMY TEST-----------------\n"
<< endl;
int coldim = 4;
int rowdim = 3;
vector<vector<double>> dummy_matrix(rowdim, vector<double>(coldim));
vector<double> row_0 = {1, 2, 3, 4};
vector<double> row_1 = {5, 6, 7, 8};
vector<double> row_2 = {9, 10, 11, 12};
dummy_matrix[0] = row_0;
dummy_matrix[1] = row_1;
dummy_matrix[2] = row_2;
cout << "Dummy matrix:" << endl;
print_full_matrix(dummy_matrix);
vector<vector<double>> dummy_diagonals = get_all_diagonals(dummy_matrix);
cout << "\nDummy matrix diagonals:" << endl;
print_full_matrix(dummy_diagonals);
// cout << "\nTransposed dummy matrix diagonals:" << endl;
// vector<vector<double>> tranposed_diag = transpose_matrix(dummy_diagonals);
// print_full_matrix(tranposed_diag);
// cout << "\n\nTransposed dummy matrix:" << endl;
// vector<vector<double>> tranposed_dummy = transpose_matrix(dummy_matrix);
// print_full_matrix(tranposed_dummy);
// cout << "\nDiagonals of Transposed dummy:" << endl;
// vector<vector<double>> diag_tranposed_dummy = get_all_diagonals(tranposed_dummy);
// print_full_matrix(diag_tranposed_dummy);
// TEST DOT PRODUCT
Plaintext pt_0;
ckks_encoder.encode(row_0, scale, pt_0);
Plaintext pt_1;
ckks_encoder.encode(row_1, scale, pt_1);
Ciphertext ct_0;
encryptor.encrypt(pt_0, ct_0);
Ciphertext ct_1;
encryptor.encrypt(pt_1, ct_1);
Ciphertext dot_prod_ct = cipher_dot_product(ct_0, ct_1, 4, relin_keys, gal_keys, evaluator);
Plaintext dot_prod_pt;
decryptor.decrypt(dot_prod_ct, dot_prod_pt);
vector<double> dot_prod;
ckks_encoder.decode(dot_prod_pt, dot_prod);
cout << "\n\n DOT PROD:" << endl;
for (int i = 0; i < 10; i++)
{
cout << dot_prod[i] << ", ";
}
cout << "\n"
<< endl;
}
int main()
{
MatrixTranspose(8192 * 2, 4);
return 0;
}