-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathchap2_2Cycles.html
394 lines (274 loc) · 25.6 KB
/
chap2_2Cycles.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
<!DOCTYPE html>
<html class="writer-html5" lang="en" >
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>2.2. Cycles — Thermal machines 1.0 documentation</title>
<link rel="stylesheet" href="_static/css/theme.css" type="text/css" />
<link rel="stylesheet" href="_static/pygments.css" type="text/css" />
<!--[if lt IE 9]>
<script src="_static/js/html5shiv.min.js"></script>
<![endif]-->
<script type="text/javascript" id="documentation_options" data-url_root="./" src="_static/documentation_options.js"></script>
<script src="_static/jquery.js"></script>
<script src="_static/underscore.js"></script>
<script src="_static/doctools.js"></script>
<script type="text/javascript" src="_static/js/theme.js"></script>
<link rel="index" title="Index" href="genindex.html" />
<link rel="search" title="Search" href="search.html" />
<link rel="next" title="3. Compression / Expansion of Gas and vapors" href="chap3_CompExpGas_Chap.html" />
<link rel="prev" title="2.1. Energy conversion" href="chap2_1EnergyConversion.html" />
</head>
<body class="wy-body-for-nav">
<div class="wy-grid-for-nav">
<nav data-toggle="wy-nav-shift" class="wy-nav-side">
<div class="wy-side-scroll">
<div class="wy-side-nav-search" >
<a href="index.html" class="icon icon-home" alt="Documentation Home"> Thermal machines
</a>
<div class="version">
1.0
</div>
<div role="search">
<form id="rtd-search-form" class="wy-form" action="search.html" method="get">
<input type="text" name="q" placeholder="Search docs" />
<input type="hidden" name="check_keywords" value="yes" />
<input type="hidden" name="area" value="default" />
</form>
</div>
</div>
<div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="main navigation">
<p class="caption"><span class="caption-text">Contents:</span></p>
<ul class="current">
<li class="toctree-l1"><a class="reference internal" href="chap1_balanceEquations_Chap.html">1. Balance equations</a></li>
<li class="toctree-l1 current"><a class="reference internal" href="chap2_thermMachinesBasics_Chap.html">2. Thermal machines: Basics</a><ul class="current">
<li class="toctree-l2"><a class="reference internal" href="chap2_1EnergyConversion.html">2.1. Energy conversion</a></li>
<li class="toctree-l2 current"><a class="current reference internal" href="#">2.2. Cycles</a><ul>
<li class="toctree-l3"><a class="reference internal" href="#thermal-machines-cycles-and-efficiency-def">2.2.1. Thermal machines cycles and efficiency (def)</a><ul>
<li class="toctree-l4"><a class="reference internal" href="#evolutions-during-a-cycle">2.2.1.1. Evolutions during a cycle</a></li>
<li class="toctree-l4"><a class="reference internal" href="#energy-conversion-efficiency">2.2.1.2. Energy conversion efficiency</a></li>
</ul>
</li>
<li class="toctree-l3"><a class="reference internal" href="#carnot-cycle">2.2.2. Carnot cycle</a><ul>
<li class="toctree-l4"><a class="reference internal" href="#carnot-heat-engine">2.2.2.1. Carnot heat engine</a></li>
<li class="toctree-l4"><a class="reference internal" href="#carnot-heat-pump-refrigerators">2.2.2.2. Carnot heat pump/refrigerators</a></li>
</ul>
</li>
<li class="toctree-l3"><a class="reference internal" href="#other-cycles">2.2.3. Other cycles</a><ul>
<li class="toctree-l4"><a class="reference internal" href="#heat-engine-reversible-cycles">2.2.3.1. Heat engine Reversible cycles</a></li>
<li class="toctree-l4"><a class="reference internal" href="#heat-engine-irreversible-cycles">2.2.3.2. Heat engine irreversible cycles</a></li>
</ul>
</li>
<li class="toctree-l3"><a class="reference internal" href="#importance-of-carnot-cycle">2.2.4. Importance of Carnot cycle</a></li>
</ul>
</li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="chap3_CompExpGas_Chap.html">3. Compression / Expansion of Gas and vapors</a></li>
<li class="toctree-l1"><a class="reference internal" href="chap4_ThermalEngines_Chap.html">4. Heat engines</a></li>
<li class="toctree-l1"><a class="reference internal" href="chap5_ThermalGenerators_Chap.html">5. Heat pumps and refrigerators</a></li>
<li class="toctree-l1"><a class="reference internal" href="zBibliography.html">6. References</a></li>
</ul>
</div>
</div>
</nav>
<section data-toggle="wy-nav-shift" class="wy-nav-content-wrap">
<nav class="wy-nav-top" aria-label="top navigation">
<i data-toggle="wy-nav-top" class="fa fa-bars"></i>
<a href="index.html">Thermal machines</a>
</nav>
<div class="wy-nav-content">
<div class="rst-content">
<div role="navigation" aria-label="breadcrumbs navigation">
<ul class="wy-breadcrumbs">
<li><a href="index.html" class="icon icon-home"></a> »</li>
<li><a href="chap2_thermMachinesBasics_Chap.html"><span class="section-number">2. </span>Thermal machines: Basics</a> »</li>
<li><span class="section-number">2.2. </span>Cycles</li>
<li class="wy-breadcrumbs-aside">
<a href="_sources/chap2_2Cycles.rst.txt" rel="nofollow"> View page source</a>
</li>
</ul>
<hr/>
</div>
<div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
<div itemprop="articleBody">
<div class="section" id="cycles">
<h1><span class="section-number">2.2. </span>Cycles<a class="headerlink" href="#cycles" title="Permalink to this headline">¶</a></h1>
<div class="section" id="thermal-machines-cycles-and-efficiency-def">
<h2><span class="section-number">2.2.1. </span>Thermal machines cycles and efficiency (def)<a class="headerlink" href="#thermal-machines-cycles-and-efficiency-def" title="Permalink to this headline">¶</a></h2>
<p>We consider in this section thermal machines working between two thermal reservoirs. In these machines, the <em>working fluid</em> is the thermodynamic system that exchange thermal energies between a hot reservoir (at temperature <img class="math" src="_images/math/f849365e25534a358a3295b0088a4078a8c70c25.svg" alt="T_H" style="vertical-align: -2px"/>) and a cold one (at temperature <img class="math" src="_images/math/225ac4bdc2299592497f0abd8d0f1548301d154a.svg" alt="T_C" style="vertical-align: -2px"/>).
Following results of <a class="reference internal" href="chap2_1EnergyConversion.html#sec-chap2-energyconversion"><span class="std std-numref">Section 2.1: </span></a>, it can supply mechanical energy (it is thus a <em>heat engine</em>) or absorb mechanical energy (it can be a <em>heat pump</em> or <em>refrigerator</em>).</p>
<div class="section" id="evolutions-during-a-cycle">
<h3><span class="section-number">2.2.1.1. </span>Evolutions during a cycle<a class="headerlink" href="#evolutions-during-a-cycle" title="Permalink to this headline">¶</a></h3>
<p>In a thermal machine, the <em>working fluid</em> is evolving on a thermodynamic cycle. Let us consider a transformation <img class="math" src="_images/math/6fb5559fd5ff1355351e22bd356e23e2ac363086.svg" alt="a" style="vertical-align: 0px"/> from a state 1 to a state 2 as represented on <a class="reference internal" href="#fig-chap2-cycle"><span class="std std-numref">Figure 2.5: </span></a></p>
<div class="figure align-center" id="id1">
<span id="fig-chap2-cycle"></span><a class="reference internal image-reference" href="_images/cycle.png"><img alt="_images/cycle.png" src="_images/cycle.png" style="width: 342.0px; height: 387.0px;" /></a>
<p class="caption"><span class="caption-number">Figure 2.5: </span><span class="caption-text">Entropic diagram representing thermal energy exchanged during a cycle.</span><a class="headerlink" href="#id1" title="Permalink to this image">¶</a></p>
</div>
<p>During reversible transformation from 1 to 2, the heat exchanged is positive and corresponds to the hatched area. During this transformation, the fluid is absorbing thermal energy <img class="math" src="_images/math/93296adac39ec25df33611a9d2188c87330e3c80.svg" alt="Q_{1\rightarrow 2}>0" style="vertical-align: -3px"/>.</p>
<p>For the return from state 2 to 1, the fluid will supply thermal energy <img class="math" src="_images/math/7c0b8cef1a297930ac0c26834f9943ab8144fa90.svg" alt="Q_{2\rightarrow 1}<0" style="vertical-align: -3px"/>. Thus two possibilities occurs:</p>
<blockquote>
<div><ul class="simple">
<li><p>The fluid follows transformation <img class="math" src="_images/math/243548a0d481b521cf87016055c58585789b8512.svg" alt="m" style="vertical-align: 0px"/> (in blue): <img class="math" src="_images/math/132cb3c5b27c0deb0bfdc95bb659c50f59461961.svg" alt="|Q_{2\rightarrow 1}|<|Q_{1\rightarrow 2}|" style="vertical-align: -4px"/> such that the thermal energy exchanged during cycle is <em>positive</em>. The application of first principle immplies that the mechanical work will be negative: this is a <strong>heat engine</strong>.</p></li>
<li><p>The fluid follows transformation <img class="math" src="_images/math/4845ae23cd4142f2a3b155fbda6b97066c9cf0b5.svg" alt="h" style="vertical-align: 0px"/> (in red): <img class="math" src="_images/math/645d307882e87a0ae2f2c634216226a9f6d1c1a4.svg" alt="|Q_{2\rightarrow 1}|>|Q_{1\rightarrow 2}|" style="vertical-align: -4px"/> such that the thermal energy exchanged during cycle is <em>negative</em>. The application of first principle immplies that the mechanical work will be positive: this can be a <strong>heat pump</strong> or a <strong>refirgerators</strong>.</p></li>
</ul>
</div></blockquote>
<p>From this observation, one can observe several things:</p>
<div class="admonition-remarks admonition">
<p class="admonition-title">Remarks</p>
<ul class="simple">
<li><p>When a cycle is followed clockwise in the entropic diagram (T,S), the cycle is describing a <em>heat engine</em></p></li>
<li><p>When a cycle is followed reversed clockwise in the entropic diagram (T,S), the cycle is describing a <em>heat pump</em> or a <em>refrigerator</em></p></li>
<li><p>Any cycle can be used as a basis to develop a thermal machine.</p></li>
</ul>
</div>
</div>
<div class="section" id="energy-conversion-efficiency">
<h3><span class="section-number">2.2.1.2. </span>Energy conversion efficiency<a class="headerlink" href="#energy-conversion-efficiency" title="Permalink to this headline">¶</a></h3>
<p>The economice notion of efficiency is generally defined by the ratio bewteen the <em>usefull energy provided</em> by the machine and its <em>energy absorption</em>, or in other words the ratio between benefits of a thermodynamic system and costs:</p>
<div class="math">
<p><img src="_images/math/304b08a931839bca4438963b494f6c4585e7aee7.svg" alt="\eta \equiv \frac{\text{benefits}}{\text{costs}}"/></p>
</div><div class="section" id="heat-engine-and-thermal-efficiency">
<h4><span class="section-number">2.2.1.2.1. </span>Heat engine and thermal efficiency<a class="headerlink" href="#heat-engine-and-thermal-efficiency" title="Permalink to this headline">¶</a></h4>
<p>For a heat engine, a mechanical energy <img class="math" src="_images/math/432a2e584669c91be350ae5f98e327628e5c59ac.svg" alt="-W" style="vertical-align: -1px"/> is produced (benefit) from a thermal energy absorption from <em>hot source</em> <img class="math" src="_images/math/d2dc0776217f2cd258ab5cf59b627cd8e0fe04fa.svg" alt="Q_H" style="vertical-align: -3px"/> (cost). This defines the <strong>thermal efficiency</strong> of the <em>heat engine</em>:</p>
<div class="math">
<p><img src="_images/math/eab82c7ac89b5dd7a1f84c749ae0dbb004d7fb44.svg" alt="\eta_{th} = \frac{-W}{Q_H}"/></p>
</div><p>Thanks to the first principle, it can also be written as:</p>
<div class="math" id="equation-thefficiency">
<p><span class="eqno">(2.9)<a class="headerlink" href="#equation-thefficiency" title="Permalink to this equation">¶</a></span><img src="_images/math/65e9be058e20f6b8532b71257e3ecd0d2e36a89c.svg" alt="\eta_{th} = \frac{Q_H + Q_C}{Q_H} = 1 + \frac{Q_C}{Q_H} = 1 - \frac{|Q_C|}{|Q_H|}"/></p>
</div><div class="admonition-remark admonition">
<p class="admonition-title">Remark</p>
<ul class="simple">
<li><p>For internal combustion engines, the thermal efficiency is about 25% for gasoline engines and 40% for diesel engines. For gas turbine, the thermal efficiency can reach 60%.</p></li>
<li><p>A great part of chemical energy (from fuel combustion) is then dissipated in heat and released in environnement (to the <em>cold sink</em>).</p></li>
</ul>
</div>
</div>
<div class="section" id="heat-generators-and-coefficient-of-performance-cop">
<h4><span class="section-number">2.2.1.2.2. </span>Heat generators and coefficient of performance (COP)<a class="headerlink" href="#heat-generators-and-coefficient-of-performance-cop" title="Permalink to this headline">¶</a></h4>
<p>For a <em>heat pump</em> or <em>refrigerators</em>, a mechanical energy <img class="math" src="_images/math/c8e845d94aeb9162f1d1112f9e176900d116f75c.svg" alt="W" style="vertical-align: 0px"/> is consumed (cost) and the benefits depend on the usefull thermal energy exchanged. Because these ratio are generally greater than 1, we talk about <strong>coefficient of performance</strong>:</p>
<p>For a <em>heat pump</em> :</p>
<div class="math" id="equation-cophp">
<p><span class="eqno">(2.10)<a class="headerlink" href="#equation-cophp" title="Permalink to this equation">¶</a></span><img src="_images/math/95496c78c7746f767a61db8f1772333cc2b36507.svg" alt="COP_{HP} = \frac{-Q_H}{W} = \frac{Q_H}{Q_H+Q_C} = \frac{1}{1 + \frac{Q_C}{Q_H}} = \frac{1}{1 - \frac{|Q_C|}{|Q_H|}}"/></p>
</div><p>For a <em>refrigerator</em> :</p>
<div class="math" id="equation-copr">
<p><span class="eqno">(2.11)<a class="headerlink" href="#equation-copr" title="Permalink to this equation">¶</a></span><img src="_images/math/b6b7cc396d57e9070f7a9c213e0a9c93d53bf4b5.svg" alt="COP_{R} = \frac{Q_C}{W} = \frac{Q_C}{-Q_H-Q_C} = \frac{1}{-\frac{Q_H}{Q_C}-1} = \frac{1}{\frac{|Q_H|}{|Q_C|}-1}"/></p>
</div></div>
</div>
</div>
<div class="section" id="carnot-cycle">
<h2><span class="section-number">2.2.2. </span>Carnot cycle<a class="headerlink" href="#carnot-cycle" title="Permalink to this headline">¶</a></h2>
<p>If a thermal machine is working between two TER in a reversible maneer, then it must exchange with both TER following isothermal transformation. These two isothermal transformation can thus be linked using:</p>
<blockquote>
<div><ul class="simple">
<li><p>2 isentropes: this is the <strong>Carnot cycle</strong></p></li>
<li><p>2 isochores: this is the <strong>Stirling cycle</strong></p></li>
<li><p>2 isobares: this is the <strong>Ericsson cycle</strong></p></li>
</ul>
</div></blockquote>
<p>These three cycles are ideal cycles for a thermal machine working between two TER and serve as reference cycle providing the maximum thermal efficiencies/COP.</p>
<div class="section" id="carnot-heat-engine">
<span id="sec-chap2-carnot"></span><h3><span class="section-number">2.2.2.1. </span>Carnot heat engine<a class="headerlink" href="#carnot-heat-engine" title="Permalink to this headline">¶</a></h3>
<div class="figure align-center" id="id2">
<span id="fig-chap2-carnotcycle"></span><a class="reference internal image-reference" href="_images/CarnotCycle.png"><img alt="_images/CarnotCycle.png" src="_images/CarnotCycle.png" style="width: 587.1px; height: 315.3px;" /></a>
<p class="caption"><span class="caption-number">Figure 2.6: </span><span class="caption-text">Carnot cycle (for a heat engine).</span><a class="headerlink" href="#id2" title="Permalink to this image">¶</a></p>
</div>
<p>It is easy to remark that in the reversible isothermes, we have <img class="math" src="_images/math/8a1c5fa5fcd6d39f6d71f76cfff248b7ea47d4a0.svg" alt="Q_C = T_C (S_1-S_2)" style="vertical-align: -4px"/> and <img class="math" src="_images/math/8af8464600e84c6837cb8b665350d4139e8926d3.svg" alt="Q_H = T_H (S_2-S_1)" style="vertical-align: -4px"/>, such that thanks to equation <a class="reference internal" href="#equation-thefficiency">Eq.2.9</a>, it is easy to show that:</p>
<div class="math" id="equation-carnottheff">
<p><span class="eqno">(2.12)<a class="headerlink" href="#equation-carnottheff" title="Permalink to this equation">¶</a></span><img src="_images/math/8e6add499d30b19dce623dc2576fa8751b9e8740.svg" alt="\eta_{th,C} = 1 - \frac{T_C}{T_H}"/></p>
</div><p>As <img class="math" src="_images/math/5ac8d3eab5a1415b3fee6cbbf66559a378ed8246.svg" alt="T_H>T_C" style="vertical-align: -2px"/>, the carnot thermal efficiency is always lower than 1.</p>
<div class="admonition-remark admonition">
<p class="admonition-title">Remark</p>
<ul class="simple">
<li><p>The Carnot thermal efficiency gives the maximum efficiency that can be reached by a heat engine between two TER.</p></li>
<li><p>For example, the Carnot thermal efficiency of a thermal power plant beteen <img class="math" src="_images/math/fb89cfad2cf8dd74bf6867535eb01b3783576725.svg" alt="T_H = 1000 K" style="vertical-align: -2px"/> (combustion temperature) and <img class="math" src="_images/math/83a2ec8513ddcbfc3f5028d3777870a3da45f5ba.svg" alt="T_C = 300 K" style="vertical-align: -2px"/> (ambiant) is about 70%. Real thermal efficiency of such power plant reaches 40% because of non reversibility.</p></li>
</ul>
</div>
</div>
<div class="section" id="carnot-heat-pump-refrigerators">
<span id="sec-chap2-carnotheatgen"></span><h3><span class="section-number">2.2.2.2. </span>Carnot heat pump/refrigerators<a class="headerlink" href="#carnot-heat-pump-refrigerators" title="Permalink to this headline">¶</a></h3>
<div class="figure align-center" id="id3">
<span id="fig-chap2-carnotcyclegen"></span><a class="reference internal image-reference" href="_images/CarnotCycleGen.png"><img alt="_images/CarnotCycleGen.png" src="_images/CarnotCycleGen.png" style="width: 595.5px; height: 318.3px;" /></a>
<p class="caption"><span class="caption-number">Figure 2.7: </span><span class="caption-text">Carnot cycle (for a heat generator: heat pump or refrigerator).</span><a class="headerlink" href="#id3" title="Permalink to this image">¶</a></p>
</div>
<p>This times, in the reversible isothermes, we have <img class="math" src="_images/math/b0196ba731607179242d25aed6204fbfc56451b0.svg" alt="Q_C = T_C (S_2-S_1)" style="vertical-align: -4px"/> and <img class="math" src="_images/math/4c8ab249bf77f6038eaf5398a74880925819f441.svg" alt="Q_H = T_H (S_1-S_2)" style="vertical-align: -4px"/>.</p>
<p>If this is a heat pump, the coefficient of performance <a class="reference internal" href="#equation-cophp">Eq.2.10</a> becomes:</p>
<div class="math" id="equation-carnotcophp">
<p><span class="eqno">(2.13)<a class="headerlink" href="#equation-carnotcophp" title="Permalink to this equation">¶</a></span><img src="_images/math/33cc06ec6e4af01d522b95783f72762a4159a59c.svg" alt="COP_{HP,C} = \frac{1}{1 - \frac{T_C}{T_H}} > 1"/></p>
</div><p>If this is a refrigerator, the coefficient of performance <a class="reference internal" href="#equation-copr">Eq.2.11</a> becomes:</p>
<div class="math" id="equation-carnotcopr">
<p><span class="eqno">(2.14)<a class="headerlink" href="#equation-carnotcopr" title="Permalink to this equation">¶</a></span><img src="_images/math/93b06e7d1a235c1391e2c53645abe529906a8e6d.svg" alt="COP_{R,C} = \frac{1}{\frac{T_H}{T_C}-1}"/></p>
</div><p>If the <img class="math" src="_images/math/080ada6ddf22b9589ad685f4f3eea4a3eefe6107.svg" alt="COP_{HP,C}" style="vertical-align: -5px"/> of a heat pump is greater than 1, we cannot conclude for a refrigerator.</p>
</div>
</div>
<div class="section" id="other-cycles">
<h2><span class="section-number">2.2.3. </span>Other cycles<a class="headerlink" href="#other-cycles" title="Permalink to this headline">¶</a></h2>
<p>It is shown that the thermal efficiency of a Carnot’s cycle is the better thermal efficiency a heat engine can reach between two TER. It is let to the reader to apply the same reasonement to a heat pump or refrigerator.</p>
<div class="section" id="heat-engine-reversible-cycles">
<h3><span class="section-number">2.2.3.1. </span>Heat engine Reversible cycles<a class="headerlink" href="#heat-engine-reversible-cycles" title="Permalink to this headline">¶</a></h3>
<p>If we consider any <strong>reversible cycle</strong>, there are two possibilities:</p>
<blockquote>
<div><ol class="arabic simple">
<li><p>If the cycle is working between the two TER <img class="math" src="_images/math/225ac4bdc2299592497f0abd8d0f1548301d154a.svg" alt="T_C" style="vertical-align: -2px"/> and <img class="math" src="_images/math/f849365e25534a358a3295b0088a4078a8c70c25.svg" alt="T_H" style="vertical-align: -2px"/>, then it will have the same thermal efficiency as Carnot cycle.</p></li>
<li><p>Otherwise, it can be decomposed in an infinity of reversible cycles <img class="math" src="_images/math/7d932693f1681ad803973bc12d044ee73ae422cd.svg" alt="i" style="vertical-align: 0px"/> working between two TER whith temperatures <img class="math" src="_images/math/b8036ece0f1f7c1da0a5b735aaddfe4bcc7b6ea4.svg" alt="T_{Ci} > T_C" style="vertical-align: -2px"/> and <img class="math" src="_images/math/bc46884081f9cb148640a961f31503525b39a6c5.svg" alt="T_{Hi} < T_H" style="vertical-align: -2px"/> who have a thermal efficiency lower than Carnot efficiency between <img class="math" src="_images/math/225ac4bdc2299592497f0abd8d0f1548301d154a.svg" alt="T_C" style="vertical-align: -2px"/> and <img class="math" src="_images/math/f849365e25534a358a3295b0088a4078a8c70c25.svg" alt="T_H" style="vertical-align: -2px"/>. As a result, the global efficiency will be lower than Carnot’s efficiency.</p></li>
</ol>
</div></blockquote>
</div>
<div class="section" id="heat-engine-irreversible-cycles">
<h3><span class="section-number">2.2.3.2. </span>Heat engine irreversible cycles<a class="headerlink" href="#heat-engine-irreversible-cycles" title="Permalink to this headline">¶</a></h3>
<p>Thanks to second principle of thermodynamics, a <em>heat engine</em> that exchange between two TER during a cycle will guarantee that (equation <a class="reference internal" href="chap2_1EnergyConversion.html#equation-secondppecycle">Eq.2.4</a>):</p>
<div class="math">
<p><img src="_images/math/777cfc665a9e5228d3fa5b27f82dd513b85ba337.svg" alt="\frac{Q_H}{T_H} + \frac{Q_C}{T_C} \le 0 \text{ (0 if reversible cycle)}"/></p>
</div><p>That can be rewritten as:</p>
<div class="math">
<p><img src="_images/math/b2ace0cd3ae8660bd7318b2306fc13549cc1e37b.svg" alt="\frac{|Q_H|}{T_H} - \frac{|Q_C|}{T_C} \le 0"/></p>
</div><p>Or:</p>
<div class="math">
<p><img src="_images/math/9b480d71f1bca769be8477f88d994109870c25d1.svg" alt="-\frac{T_C}{T_H} \ge -\frac{|Q_C|}{|Q_H|}"/></p>
</div><p>And finally, thanks to relation <a class="reference internal" href="#equation-thefficiency">Eq.2.9</a>, the thermal efficiency of a heat pump reads:</p>
<div class="math">
<p><img src="_images/math/0a14e038970ce61c0b4817b6aedf09d02f15a2af.svg" alt="\eta_{th} = 1 - \frac{|Q_C|}{|Q_H|} \le 1 - \frac{T_C}{T_H}"/></p>
</div><p>In other words, the thermal efficiency of any irreversible cycle between two TER will be lower than the Carnot’s thermal efficiency.</p>
</div>
</div>
<div class="section" id="importance-of-carnot-cycle">
<h2><span class="section-number">2.2.4. </span>Importance of Carnot cycle<a class="headerlink" href="#importance-of-carnot-cycle" title="Permalink to this headline">¶</a></h2>
<div class="admonition caution">
<p class="admonition-title">Caution</p>
<p><strong>Carnot cycle</strong>, as any reversible cycle working between two TER (Ericsson, Stirling, etc.) may serve as reference for real cycles describing thermal machines :</p>
</div>
<ul class="simple">
<li><p>In a <em>heat engine</em>, thermal exchanged cannot be represented by isothermal transformations. It is more often isobaric/isochore transformations (or a combination of both).</p></li>
<li><p>In a <em>heat pump</em> (or <em>refrigerator</em>), it is possible to be close to isothermal transformations during heat exchanges using phase change properties of a liquid-vapor couple (<img class="math" src="_images/math/a4e4f488c2a416507eda9a3feeddeb7417037884.svg" alt="p^{sat}(T)" style="vertical-align: -4px"/>).</p></li>
<li><p>Whatever the system is, transformations will be non reversibles.</p></li>
</ul>
</div>
</div>
</div>
</div>
<footer>
<div class="rst-footer-buttons" role="navigation" aria-label="footer navigation">
<a href="chap3_CompExpGas_Chap.html" class="btn btn-neutral float-right" title="3. Compression / Expansion of Gas and vapors" accesskey="n" rel="next">Next <span class="fa fa-arrow-circle-right"></span></a>
<a href="chap2_1EnergyConversion.html" class="btn btn-neutral float-left" title="2.1. Energy conversion" accesskey="p" rel="prev"><span class="fa fa-arrow-circle-left"></span> Previous</a>
</div>
<hr/>
<div role="contentinfo">
<p>
© Copyright 2019, Fabien Petitpas, AMU, Polytech Marseille ME
</p>
</div>
Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a
<a href="https://github.com/rtfd/sphinx_rtd_theme">theme</a>
provided by <a href="https://readthedocs.org">Read the Docs</a>.
</footer>
</div>
</div>
</section>
</div>
<script type="text/javascript">
jQuery(function () {
SphinxRtdTheme.Navigation.enable(true);
});
</script>
</body>
</html>