diff --git a/semantic-kernel/concepts/text-search/index.md b/semantic-kernel/concepts/text-search/index.md index 81a3f1af..b4eeb6d5 100644 --- a/semantic-kernel/concepts/text-search/index.md +++ b/semantic-kernel/concepts/text-search/index.md @@ -200,9 +200,95 @@ Next we recommend looking at [Text Search Abstractions](./text-search-abstractio ::: zone-end ::: zone pivot="programming-language-python" -## Coming soon +## Implementing RAG using web text search -More coming soon. +In the following sample code, you can choose between using Bing or Google to perform web search operations. + +> [!TIP] +> Install the required packages using: +> +> `pip install semantic-kernel` + +### Create text search instance + +Each sample creates a text search instance and then performs a search operation to get results for the provided query. + +#### Bing web search + +```python +# Create a kernel with OpenAI chat completion +from semantic_kernel import Kernel +from semantic_kernel.connectors.ai.open_ai import AzureChatCompletion +from semantic_kernel.connectors.search.bing import BingSearch +from semantic_kernel.functions import KernelArguments, KernelPlugin + +# Initialize the Kernel +kernel = Kernel() + +# Add OpenAI/Azure OpenAI chat completion service +kernel.add_service(AzureChatCompletion(service_id="chat")) + +# Create a Bing Search instance (API key will be picked up from the environment) +bing_search = BingSearch() + +# Build a Bing Search plugin and add it to the kernel +search_plugin = KernelPlugin.from_text_search_with_search( + bing_search, + description="Get search results using Bing." +) + +# Add plugin to the kernel with a specific plugin name +kernel.add_plugin(search_plugin, plugin_name="bing") + +# Define query and prompt +query = "What is Semantic Kernel?" +prompt = "{{bing.search $query}}. {{$query}}" + +# Execute search query using the plugin +arguments = KernelArguments(query=query) +result = kernel.invoke_prompt(prompt, arguments) + +# Display result +print(result) +``` + +#### Google web search + +```python +from semantic_kernel import Kernel +from semantic_kernel.connectors.ai.open_ai import AzureChatCompletion +from semantic_kernel.connectors.search.google import GoogleSearch +from semantic_kernel.functions import KernelArguments, KernelPlugin + +# Initialize the Kernel +kernel = Kernel() + +# Add OpenAI/Azure OpenAI chat completion service +kernel.add_service(AzureChatCompletion(service_id="chat")) + +# Create a Google Search instance (API key and Search Engine ID picked from environment) +google_search = GoogleSearch() + +# Build a Google Search plugin and add it to the kernel +search_plugin = KernelPlugin.from_text_search_with_search( + google_search, + description="Get details about Semantic Kernel concepts." +) + +# Add plugin to the kernel with a specific plugin name +kernel.add_plugin(search_plugin, plugin_name="google") + +# Define query and prompt +query = "What is Semantic Kernel?" +prompt = "{{google.search $query}}. {{$query}}" + +# Execute search query using the plugin +arguments = KernelArguments(query=query) +result = kernel.invoke_prompt(prompt, arguments) + +# Display result +print(result) +``` ::: zone-end ::: zone pivot="programming-language-java"