Skip to content

Latest commit

 

History

History

accel31

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 

Accel 31 Click

Accel 31 Click demo application is developed using the NECTO Studio, ensuring compatibility with mikroSDK's open-source libraries and tools. Designed for plug-and-play implementation and testing, the demo is fully compatible with all development, starter, and mikromedia boards featuring a mikroBUS™ socket.


Click Library

  • Author : Stefan Filipovic
  • Date : Sep 2024.
  • Type : I2C/SPI type

Software Support

Example Description

This example demonstrates the use of Accel 31 Click board by reading and displaying the accelerometer data (X, Y, and Z axis) and a temperature measurement in degrees Celsius.

Example Libraries

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Accel31

Example Key Functions

  • accel31_cfg_setup Config Object Initialization function.
void accel31_cfg_setup ( accel31_cfg_t *cfg );
  • accel31_init Initialization function.
err_t accel31_init ( accel31_t *ctx, accel31_cfg_t *cfg );
  • accel31_default_cfg Click Default Configuration function.
err_t accel31_default_cfg ( accel31_t *ctx );
  • accel31_get_data This function reads the accelerometer and temperature measurement data.
err_t accel31_get_data ( accel31_t *ctx, accel31_data_t *data_out );
  • accel31_set_accel_odr This function sets the accel measurement output data rate.
err_t accel31_set_accel_odr ( accel31_t *ctx, uint8_t odr );
  • accel31_set_accel_fsr This function sets the accel measurement full scale range.
err_t accel31_set_accel_fsr ( accel31_t *ctx, uint8_t fsr );

Application Init

Initializes the driver and performs the Click default configuration.

void application_init ( void )
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    accel31_cfg_t accel31_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    accel31_cfg_setup( &accel31_cfg );
    ACCEL31_MAP_MIKROBUS( accel31_cfg, MIKROBUS_1 );
    err_t init_flag = accel31_init( &accel31, &accel31_cfg );
    if ( ( I2C_MASTER_ERROR == init_flag ) || ( SPI_MASTER_ERROR == init_flag ) )
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }
    
    if ( ACCEL31_ERROR == accel31_default_cfg ( &accel31 ) )
    {
        log_error( &logger, " Default configuration." );
        for ( ; ; );
    }
    
    log_info( &logger, " Application Task " );
}

Application Task

Checks for a new data ready indication and then reads the accelerometer and temperature measurements. The results are displayed on the USB UART at 12.5 Hz output data rate.

void application_task ( void )
{
    accel31_data_t meas_data;
    if ( ACCEL31_OK == accel31_get_data ( &accel31, &meas_data ) )
    {
        log_printf( &logger, " Accel X: %.3f g\r\n", meas_data.accel.x );
        log_printf( &logger, " Accel Y: %.3f g\r\n", meas_data.accel.y );
        log_printf( &logger, " Accel Z: %.3f g\r\n", meas_data.accel.z );
        log_printf( &logger, " Temperature: %d degC\r\n\n", ( int16_t ) meas_data.temperature );
        Delay_ms ( 80 );
    }
}

Note

The Click board determines the communication protocol at the first communication check after power-up. In the case of I2C, the IC responds with NACK on the first check, which blocks the I2C bus on some MCUs. Re-running the program (without power cycling the Click board power supply) should unlock the communication and solve this issue.

Application Output

This Click board can be interfaced and monitored in two ways:

  • Application Output - Use the "Application Output" window in Debug mode for real-time data monitoring. Set it up properly by following this tutorial.
  • UART Terminal - Monitor data via the UART Terminal using a USB to UART converter. For detailed instructions, check out this tutorial.

Additional Notes and Information

The complete application code and a ready-to-use project are available through the NECTO Studio Package Manager for direct installation in the NECTO Studio. The application code can also be found on the MIKROE GitHub account.