Skip to content

Latest commit

 

History

History

buck14

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 

Buck 14 Click

Buck 14 Click demo application is developed using the NECTO Studio, ensuring compatibility with mikroSDK's open-source libraries and tools. Designed for plug-and-play implementation and testing, the demo is fully compatible with all development, starter, and mikromedia boards featuring a mikroBUS™ socket.


Click Library

  • Author : MikroE Team
  • Date : Jan 2020.
  • Type : I2C type

Software Support

Example Description

This app enables usage of high-efficiency step-down converter.

Example Libraries

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Buck14

Example Key Functions

  • buck14_cfg_setup Config Object Initialization function.
void buck14_cfg_setup ( buck14_cfg_t *cfg );
  • buck14_init Initialization function.
err_t buck14_init ( buck14_t *ctx, buck14_cfg_t *cfg );
  • buck14_default_cfg Click Default Configuration function.
void buck14_default_cfg ( buck14_t *ctx );
  • buck14_power_ctrl This function sets state of the power control pin on cs.
void buck14_power_ctrl ( buck14_t *ctx, uint8_t state );
  • buck14_salert This function gets manufacturer id.
uint8_t buck14_salert ( buck14_t *ctx );
  • buc14_write_vout This function sets output V.
uint8_t buc14_write_vout ( buck14_t *ctx, float vout );

Application Init

Configure device.

void application_init ( void )
{
    log_cfg_t log_cfg;
    buck14_cfg_t cfg;
    uint8_t write_data;
    uint8_t status_data;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    buck14_cfg_setup( &cfg );
    BUCK14_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    buck14_init( &buck14, &cfg );

    buck14_reset( &buck14 );

    write_data  = BUCK14_CTRL_ENABLE_NO_MARGIN;
    buck14_generic_write( &buck14, BUCK14_CMD_OPERATION, write_data , 1 );
    Delay_ms ( 300 );

    status_data = buck14_check_mfr_id(  &buck14 );
    error_handler( status_data );
    log_printf( &logger, "-Device ID OK!\r\n" );
    
    buck14_power_ctrl( &buck14, BUCK14_PIN_STATE_HIGH );

    buck14_default_cfg( &buck14 );
    log_printf( &logger, " ***** App init ***** \r\n" );
    log_printf( &logger, "----------------------\r\n" );
    Delay_ms ( 100 );
}

Application Task

Sends 4 different commands for VOUT in span of 8sec

void application_task ( void )
{
    uint8_t status_data;
    float vout_value;

    vout_value = 1.2;
    status_data = buc14_write_vout( &buck14, vout_value );
    error_handler( status_data );

    if ( status_data == BUCK14_SUCCESSFUL )
    {
        read_vout_data(  &buck14 );
    }

    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );

    vout_value = 3.7;
    status_data = buc14_write_vout( &buck14, vout_value );
    error_handler( status_data );

    if ( status_data == BUCK14_SUCCESSFUL )
    {
        read_vout_data( &buck14 );
    }

    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );

    vout_value = 2.5;
    status_data = buc14_write_vout( &buck14, vout_value );
    error_handler( status_data );

    if ( status_data == BUCK14_SUCCESSFUL )
    {
        read_vout_data(  &buck14 );
    }
    
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );

    vout_value = 4.5;
    status_data = buc14_write_vout(  &buck14, vout_value );
    error_handler( status_data );

    if ( status_data == BUCK14_SUCCESSFUL )
    {
        read_vout_data(  &buck14 );
    }
    
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    log_printf( &logger, "```````````````\r\n" );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
}

Note

When you send data you should send LSB first. Device input V should be beetween 4.5 - 14 V. Device output V could be from 0.5 - 5 V deepending from limits you set currently it is set to 1V.

Application Output

This Click board can be interfaced and monitored in two ways:

  • Application Output - Use the "Application Output" window in Debug mode for real-time data monitoring. Set it up properly by following this tutorial.
  • UART Terminal - Monitor data via the UART Terminal using a USB to UART converter. For detailed instructions, check out this tutorial.

Additional Notes and Information

The complete application code and a ready-to-use project are available through the NECTO Studio Package Manager for direct installation in the NECTO Studio. The application code can also be found on the MIKROE GitHub account.