DAC 6 Click demo application is developed using the NECTO Studio, ensuring compatibility with mikroSDK's open-source libraries and tools. Designed for plug-and-play implementation and testing, the demo is fully compatible with all development, starter, and mikromedia boards featuring a mikroBUS™ socket.
- Author : MikroE Team
- Date : jul 2020.
- Type : SPI type
DAC 6 Click carries 12-bit buffered Digital-to-Analog Converter. It converts digital value to the corresponding voltage level using external voltage reference.
- MikroSDK.Board
- MikroSDK.Log
- Click.Dac6
dac6_cfg_setup
Config Object Initialization function.
void dac6_cfg_setup ( dac6_cfg_t *cfg );
dac6_init
Initialization function.
err_t dac6_init ( dac6_t *ctx, dac6_cfg_t *cfg );
dac6_set_output
Function is used to set operation mode output channel and level.
float dac6_set_output ( dac6_t *ctx );
dac6_write_data
Sends 16-bit data to the device's input shift register.
void dac6_write_data ( dac6_t *ctx, uint16_t wr_data );
Initalizes SPI driver.
void application_init ( void )
{
log_cfg_t log_cfg;
dac6_cfg_t cfg;
/**
* Logger initialization.
* Default baud rate: 115200
* Default log level: LOG_LEVEL_DEBUG
* @note If USB_UART_RX and USB_UART_TX
* are defined as HAL_PIN_NC, you will
* need to define them manually for log to work.
* See @b LOG_MAP_USB_UART macro definition for detailed explanation.
*/
LOG_MAP_USB_UART( log_cfg );
log_init( &logger, &log_cfg );
log_info( &logger, "---- Application Init ----" );
// Click initialization.
dac6_cfg_setup( &cfg );
DAC6_MAP_MIKROBUS( cfg, MIKROBUS_1 );
dac6_init( &dac6, &cfg );
}
This example shows capabilities of DAC 6 Click by changeing output values from 0 to the maximum output range on all four channels. Output voltage is calculated by using the equation : Vout = Vrefin * (set_out / 4095).
void application_task ( void )
{
for ( n_cnt = 0; n_cnt < 4096; n_cnt += 315 )
{
dac6.chan = DAC6_CHANNEL_A;
dac6.op_mod = DAC6_WRITE_SPEC_UPDATE_OUTPUT;
dac6.v_ref = DAC6_V_REF_2048;
dac6.set_out = n_cnt;
v_out = dac6_set_output( &dac6 );
log_printf( &logger, " Channel A : VOUT ~ %.2f mV\r\n", v_out );
log_printf( &logger, "--------------------\r\n" );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
}
for ( n_cnt = 0; n_cnt < 4096; n_cnt += 315 )
{
dac6.chan = DAC6_CHANNEL_B;
dac6.op_mod = DAC6_WRITE_SPEC_UPDATE_OUTPUT;
dac6.v_ref = DAC6_V_REF_2048;
dac6.set_out = n_cnt;
v_out = dac6_set_output( &dac6 );
log_printf( &logger, " Channel B : VOUT ~ %.2f mV\r\n", v_out );
log_printf( &logger, "--------------------\r\n" );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
}
for ( n_cnt = 0; n_cnt < 4096; n_cnt += 315 )
{
dac6.chan = DAC6_CHANNEL_C;
dac6.op_mod = DAC6_WRITE_SPEC_UPDATE_OUTPUT;
dac6.v_ref = DAC6_V_REF_2048;
dac6.set_out = n_cnt;
v_out = dac6_set_output( &dac6 );
log_printf( &logger, " Channel C : VOUT ~ %.2f mV\r\n", v_out );
log_printf( &logger, "--------------------\r\n" );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
}
for ( n_cnt = 0; n_cnt < 4096; n_cnt += 315 )
{
dac6.chan = DAC6_CHANNEL_D;
dac6.op_mod = DAC6_WRITE_SPEC_UPDATE_OUTPUT;
dac6.v_ref = DAC6_V_REF_2048;
dac6.set_out = n_cnt;
v_out = dac6_set_output( &dac6 );
log_printf( &logger, " Channel D : VOUT ~ %.2f mV\r\n", v_out );
log_printf( &logger, "--------------------\r\n" );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
}
Delay_ms ( 1000 );
}
This Click board can be interfaced and monitored in two ways:
- Application Output - Use the "Application Output" window in Debug mode for real-time data monitoring. Set it up properly by following this tutorial.
- UART Terminal - Monitor data via the UART Terminal using a USB to UART converter. For detailed instructions, check out this tutorial.
The complete application code and a ready-to-use project are available through the NECTO Studio Package Manager for direct installation in the NECTO Studio. The application code can also be found on the MIKROE GitHub account.