Skip to content

Latest commit

 

History

History

dcmotor29

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 

DC Motor 29 Click

DC Motor 29 Click demo application is developed using the NECTO Studio, ensuring compatibility with mikroSDK's open-source libraries and tools. Designed for plug-and-play implementation and testing, the demo is fully compatible with all development, starter, and mikromedia boards featuring a mikroBUS™ socket.


Click Library

  • Author : Stefan Ilic
  • Date : Sep 2023.
  • Type : SPI type

Software Support

Example Description

This example demonstrates the use of the DC Motor 29 Click board by driving the motor in both directions with braking and coasting in between.

Example Libraries

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.DCMotor29

Example Key Functions

  • dcmotor29_cfg_setup Config Object Initialization function.
void dcmotor29_cfg_setup ( dcmotor29_cfg_t *cfg );
  • dcmotor29_init Initialization function.
err_t dcmotor29_init ( dcmotor29_t *ctx, dcmotor29_cfg_t *cfg );
  • dcmotor29_default_cfg Click Default Configuration function.
err_t dcmotor29_default_cfg ( dcmotor29_t *ctx );
  • dcmotor29_register_write DC Motor 29 data register writing function.
err_t dcmotor29_register_write ( dcmotor29_t *ctx, uint8_t reg, uint8_t data_in );
  • dcmotor29_port_expander_read DC Motor 29 port ecpander read register function.
err_t dcmotor29_port_expander_read ( dcmotor29_t *ctx, uint8_t reg, uint8_t *data_out );
  • dcmotor29_drive_motor DC Motor 29 drive motor function.
err_t dcmotor29_drive_motor ( dcmotor29_t *ctx, uint8_t state );

Application Init

Initializes the driver and performs the Click default configuration.

void application_init ( void )
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    dcmotor29_cfg_t dcmotor29_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    dcmotor29_cfg_setup( &dcmotor29_cfg );
    DCMOTOR29_MAP_MIKROBUS( dcmotor29_cfg, MIKROBUS_1 );
    if ( SPI_MASTER_ERROR == dcmotor29_init( &dcmotor29, &dcmotor29_cfg ) )
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }
    
    if ( DCMOTOR29_ERROR == dcmotor29_default_cfg ( &dcmotor29 ) )
    {
        log_error( &logger, " Default configuration." );
        for ( ; ; );
    }
       
    log_info( &logger, " Application Task " );
}

Application Task

Drives the motor in both directions with coasting and braking in between, every sate is lasting 5 seconds.

void application_task ( void )
{
    dcmotor29_drive_motor( &dcmotor29, DCMOTOR29_DRIVE_MOTOR_CW );
    log_printf( &logger, " Driving motor Clockwise \r\n" );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    
    dcmotor29_drive_motor( &dcmotor29, DCMOTOR29_DRIVE_MOTOR_BRAKE );
    log_printf( &logger, " Brake is on \r\n" );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    
    dcmotor29_drive_motor( &dcmotor29, DCMOTOR29_DRIVE_MOTOR_CCW );
    log_printf( &logger, " Driving motor counter-clockwise \r\n" );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    
    dcmotor29_drive_motor( &dcmotor29, DCMOTOR29_DRIVE_MOTOR_COASTING );
    log_printf( &logger, " Driving motor Coasting \r\n" );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
}

Application Output

This Click board can be interfaced and monitored in two ways:

  • Application Output - Use the "Application Output" window in Debug mode for real-time data monitoring. Set it up properly by following this tutorial.
  • UART Terminal - Monitor data via the UART Terminal using a USB to UART converter. For detailed instructions, check out this tutorial.

Additional Notes and Information

The complete application code and a ready-to-use project are available through the NECTO Studio Package Manager for direct installation in the NECTO Studio. The application code can also be found on the MIKROE GitHub account.