EERAM 3v3 Click demo application is developed using the NECTO Studio, ensuring compatibility with mikroSDK's open-source libraries and tools. Designed for plug-and-play implementation and testing, the demo is fully compatible with all development, starter, and mikromedia boards featuring a mikroBUS™ socket.
- Author : Jelena Milosavljevic
- Date : Jun 2021.
- Type : I2C type
This example show using EERAM Click to store the data to the SRAM ( static RAM ) memory. The data is read and written by the I2C serial communication bus, and the memory cells are organized into 2048 bytes, each 8bit wide.
- MikroSDK.Board
- MikroSDK.Log
- Click.EERAM3v3
eeram3v3_cfg_setup
Config Object Initialization function.
void eeram3v3_cfg_setup ( eeram3v3_cfg_t *cfg );
eeram3v3_init
Initialization function.
err_t eeram3v3_init ( eeram3v3_t *ctx, eeram3v3_cfg_t *cfg );
eeram3v3_generic_write
This function writes a desired number of data bytes starting from the selected register by using I2C serial interface.
void eeram3v3_generic_write ( eeram3v3_t *ctx, uint8_t reg, uint8_t *tx_buf, uint8_t tx_len );
eeram3v3_generic_read
This function reads a desired number of data bytes starting from the selected register by using I2C serial interface.
void eeram3v3_generic_read ( eeram3v3_t *ctx, uint8_t reg, uint8_t *rx_buf, uint8_t rx_len );
eeram3v3_status_write
Status register contains settings for write protection and auto-store function. Use this function to configure them.
void eeram3v3_status_write ( eeram3v3_t *ctx, uint8_t command );
EERAM driver nitialization.
void application_init ( void )
{
log_cfg_t log_cfg; /**< Logger config object. */
eeram3v3_cfg_t eeram3v3_cfg; /**< Click config object. */
/**
* Logger initialization.
* Default baud rate: 115200
* Default log level: LOG_LEVEL_DEBUG
* @note If USB_UART_RX and USB_UART_TX
* are defined as HAL_PIN_NC, you will
* need to define them manually for log to work.
* See @b LOG_MAP_USB_UART macro definition for detailed explanation.
*/
LOG_MAP_USB_UART( log_cfg );
log_init( &logger, &log_cfg );
log_info( &logger, " Application Init " );
// Click initialization.
eeram3v3_cfg_setup( &eeram3v3_cfg );
EERAM3V3_MAP_MIKROBUS( eeram3v3_cfg, MIKROBUS_1 );
err_t init_flag = eeram3v3_init( &eeram3v3, &eeram3v3_cfg );
if ( I2C_MASTER_ERROR == init_flag ) {
log_error( &logger, " Application Init Error. " );
log_info( &logger, " Please, run program again... " );
for ( ; ; );
}
log_info( &logger, " Application Task " );
}
Writing data to Click memory and displaying the read data via UART.
void application_task ( void )
{
log_info( &logger, "Writing MikroE to SRAM memory, from address 0x0150:" );
eeram3v3_write( &eeram3v3, 0x0150, &wr_data, 9 );
log_info( &logger, "Reading 9 bytes of SRAM memory, from address 0x0150:" );
eeram3v3_read( &eeram3v3, 0x0150, &rd_data, 9 );
log_info( &logger, "Data read: %s", rd_data );
Delay_ms ( 1000 );
}
This Click board can be interfaced and monitored in two ways:
- Application Output - Use the "Application Output" window in Debug mode for real-time data monitoring. Set it up properly by following this tutorial.
- UART Terminal - Monitor data via the UART Terminal using a USB to UART converter. For detailed instructions, check out this tutorial.
The complete application code and a ready-to-use project are available through the NECTO Studio Package Manager for direct installation in the NECTO Studio. The application code can also be found on the MIKROE GitHub account.