Skip to content

Latest commit

 

History

History

efuse4

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 

eFuse 4 Click

eFuse 4 Click demo application is developed using the NECTO Studio, ensuring compatibility with mikroSDK's open-source libraries and tools. Designed for plug-and-play implementation and testing, the demo is fully compatible with all development, starter, and mikromedia boards featuring a mikroBUS™ socket.


Click Library

  • Author : Nenad Filipovic
  • Date : Nov 2022.
  • Type : I2C type

Software Support

Example Description

This library contains API for the eFuse 4 Click driver. This driver provides the functions to set the current limiting conditions in order to provide the threshold of the fault conditions.

Example Libraries

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.eFuse4

Example Key Functions

  • efuse4_cfg_setup Config Object Initialization function.
void efuse4_cfg_setup ( efuse4_cfg_t *cfg );
  • efuse4_init Initialization function.
err_t efuse4_init ( efuse4_t *ctx, efuse4_cfg_t *cfg );
  • efuse4_default_cfg Click Default Configuration function.
err_t efuse4_default_cfg ( efuse4_t *ctx );
  • efuse4_set_current_limit eFuse 4 set current limit function.
err_t efuse4_set_current_limit ( efuse4_t *ctx, efuse4_current_limit_t current_limit )
  • efuse4_set_resistance eFuse 4 set resistance function.
err_t efuse4_set_resistance ( efuse4_t *ctx, uint32_t res_ohm );
  • efuse4_set_digi_pot eFuse 4 set normal mode function.
void efuse4_set_normal_mode ( efuse4_t *ctx );

Application Init

Initialization of I2C module and log UART. After driver initialization, default settings turn on the device.

void application_init ( void ) 
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    efuse4_cfg_t efuse4_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    efuse4_cfg_setup( &efuse4_cfg );
    EFUSE4_MAP_MIKROBUS( efuse4_cfg, MIKROBUS_1 );
    if ( I2C_MASTER_ERROR == efuse4_init( &efuse4, &efuse4_cfg ) ) 
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }
    
    if ( EFUSE4_ERROR == efuse4_default_cfg ( &efuse4 ) )
    {
        log_error( &logger, " Default configuration." );
        for ( ; ; );
    }
    
    log_info( &logger, " Application Task " );
    log_printf( &logger, "---------------------------\r\n" );
    Delay_ms ( 100 );
    
    display_selection( );
    Delay_ms ( 100 );
}

Application Task

This example demonstrates the use of the eFuse 4 Click board™. Reading user's input from UART Terminal and using it as an index for an array of pre-calculated values that define the current limit level. Results are being sent to the UART Terminal, where you can track their changes.

void application_task ( void ) 
{  
    static char index;
    
    if ( EFUSE4_ERROR != log_read( &logger, &index, 1 ) ) 
    {
        if ( ( index >= '0' ) && ( index <= '6' ) ) 
        {
            efuse4_set_current_limit ( &efuse4, limit_value_op[ index - 48 ] );
            log_printf( &logger, "  >>> Selected mode %d     \r\n", index - 48 );
            log_printf( &logger, "  Current limit is %d mA   \r\n", limit_value_op[ index - 48 ] );
            log_printf( &logger, "---------------------------\r\n" );
            Delay_ms ( 100 );
        }
        else 
        { 
            log_printf( &logger, "    Data not in range!    \r\n" );
            log_printf( &logger, "---------------------------\r\n" );
            display_selection( );
            Delay_ms ( 100 );
        }
    }
}

Application Output

This Click board can be interfaced and monitored in two ways:

  • Application Output - Use the "Application Output" window in Debug mode for real-time data monitoring. Set it up properly by following this tutorial.
  • UART Terminal - Monitor data via the UART Terminal using a USB to UART converter. For detailed instructions, check out this tutorial.

Additional Notes and Information

The complete application code and a ready-to-use project are available through the NECTO Studio Package Manager for direct installation in the NECTO Studio. The application code can also be found on the MIKROE GitHub account.