Skip to content

Latest commit

 

History

History

gaussmeter

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 

Gaussmeter Click

Gaussmeter Click demo application is developed using the NECTO Studio, ensuring compatibility with mikroSDK's open-source libraries and tools. Designed for plug-and-play implementation and testing, the demo is fully compatible with all development, starter, and mikromedia boards featuring a mikroBUS™ socket.


Click Library

  • Author : MikroE Team
  • Date : Feb 2020.
  • Type : I2C/SPI type

Software Support

Example Description

This example showcases how to configure and use the Gaussmeter Click. This Click measures magnetic fields around the device using a 3 axis measurement system. Alongside the magnetometer, the Click contains an integrated temperature sensor which provides data for the thermal compensation.

Example Libraries

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Gaussmeter

Example Key Functions

  • gaussmeter_cfg_setup Config Object Initialization function.
void gaussmeter_cfg_setup ( gaussmeter_cfg_t *cfg );
  • gaussmeter_init Initialization function.
err_t gaussmeter_init ( gaussmeter_t *ctx, gaussmeter_cfg_t *cfg );
  • gaussmeter_default_cfg Click Default Configuration function.
void gaussmeter_default_cfg ( gaussmeter_t *ctx );
  • gaussmeter_write_reg This function writes 16-bit data to the specified register address.
uint8_t gaussmeter_write_reg ( gaussmeter_t *ctx, uint8_t reg_addr, uint16_t transfer_data );
  • gaussmeter_get_data This function reads the temperature and axis data from the chip.
uint8_t gaussmeter_get_data ( gaussmeter_t *ctx, float *output_data );
  • gaussmeter_digital_read_int This function reads the digital input signal from the INT pin.
uint8_t gaussmeter_digital_read_int ( gaussmeter_t *ctx );

Application Init

This function initializes and configures the Click and logger modules. Additional configuring is done in the default_cfg(...) function.

void application_init ( )
{
    log_cfg_t log_cfg;
    gaussmeter_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    gaussmeter_cfg_setup( &cfg );
    GAUSSMETER_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    gaussmeter_init( &gaussmeter, &cfg );
    Delay_ms ( 100 );
    gaussmeter_default_cfg( &gaussmeter );
    Delay_ms ( 500 );
}

Application Task

This function reads data from the magnetometer and the temperature sensor and displays that data using the UART console every 400 milliseconds.

void application_task ( )
{
    float temp_buf[ 4 ] = { 0 };
    uint8_t error_bit;
    uint8_t axis_check;
    uint8_t cnt;

    error_bit = gaussmeter_get_data( &gaussmeter, temp_buf );

    if ( !error_bit )
    {
        axis_check = 1;
        buf_idx = 0;
    }

    for ( cnt = 0; cnt < 4; cnt++ )
    {
        switch ( gaussmeter.aux.command_byte_low & axis_check )
        {
            case 1:
            {
                log_printf( &logger, " * Temperature: %.2f C\r\n", temp_buf[ buf_idx++ ] );
                break;
            }
            case 2:
            {
                log_printf( &logger, " * X-axis: %.2f microT\r\n", temp_buf[ buf_idx++ ] );
                break;
            }
            case 4:
            {
                log_printf( &logger, " * Y-axis: %.2f microT\r\n", temp_buf[ buf_idx++ ] );
                break;
            }
            case 8:
            {
                log_printf( &logger, " * Z-axis: %.2f microT\r\n", temp_buf[ buf_idx++ ] );
            }
        }
        axis_check <<= 1;
    }
    log_printf( &logger, "----------------------------------\r\n" );
    Delay_ms ( 400 );
}

Application Output

This Click board can be interfaced and monitored in two ways:

  • Application Output - Use the "Application Output" window in Debug mode for real-time data monitoring. Set it up properly by following this tutorial.
  • UART Terminal - Monitor data via the UART Terminal using a USB to UART converter. For detailed instructions, check out this tutorial.

Additional Notes and Information

The complete application code and a ready-to-use project are available through the NECTO Studio Package Manager for direct installation in the NECTO Studio. The application code can also be found on the MIKROE GitHub account.