Skip to content

Latest commit

 

History

History

ipsdisplay

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 

IPS Display Click

IPS Display Click demo application is developed using the NECTO Studio, ensuring compatibility with mikroSDK's open-source libraries and tools. Designed for plug-and-play implementation and testing, the demo is fully compatible with all development, starter, and mikromedia boards featuring a mikroBUS™ socket.


Click Library

  • Author : Stefan Filipovic
  • Date : Jan 2024.
  • Type : SPI type

Software Support

Example Description

This example demonstrates the use of the IPS Display Click board by showing a practical example of using the implemented functions.

Example Libraries

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.IPSDisplay

Example Key Functions

  • ipsdisplay_cfg_setup Config Object Initialization function.
void ipsdisplay_cfg_setup ( ipsdisplay_cfg_t *cfg );
  • ipsdisplay_init Initialization function.
err_t ipsdisplay_init ( ipsdisplay_t *ctx, ipsdisplay_cfg_t *cfg );
  • ipsdisplay_default_cfg Click Default Configuration function.
err_t ipsdisplay_default_cfg ( ipsdisplay_t *ctx );
  • ipsdisplay_fill_screen This function fills the screen with the selected color.
err_t ipsdisplay_fill_screen ( ipsdisplay_t *ctx, uint16_t color );
  • ipsdisplay_write_string This function writes a text string starting from the selected position in a 6x12 font size with a specified color.
err_t ipsdisplay_write_string ( ipsdisplay_t *ctx, ipsdisplay_point_t start_pt, uint8_t *data_in, uint16_t color );
  • ipsdisplay_draw_line This function draws a line with a specified color.
err_t ipsdisplay_draw_line ( ipsdisplay_t *ctx, ipsdisplay_point_t start_pt, ipsdisplay_point_t end_pt, uint16_t color );

Application Init

Initializes the driver and performs the Click default configuration.

void application_init ( void )
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    ipsdisplay_cfg_t ipsdisplay_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    ipsdisplay_cfg_setup( &ipsdisplay_cfg );
    IPSDISPLAY_MAP_MIKROBUS( ipsdisplay_cfg, MIKROBUS_1 );
    if ( SPI_MASTER_ERROR == ipsdisplay_init( &ipsdisplay, &ipsdisplay_cfg ) )
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }
    
    if ( IPSDISPLAY_ERROR == ipsdisplay_default_cfg ( &ipsdisplay ) )
    {
        log_error( &logger, " Default configuration." );
        for ( ; ; );
    }
    
    log_info( &logger, " Application Task " );
}

Application Task

Showcases the text writing example as well as drawing pictures and objects, and filling the whole screen with a desired color. All data is logged on the USB UART where you can track the program flow.

void application_task ( void )
{
    ipsdisplay_point_t start_pt, end_pt;

#if IPSDISPLAY_RESOURCES_INCLUDE_IMG
    log_printf( &logger, " Drawing MIKROE logo example\r\n\n" );
    ipsdisplay_draw_picture ( &ipsdisplay, IPSDISPLAY_ROTATION_HORIZONTAL_180, ipsdisplay_img_mikroe );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
#endif
    log_printf( &logger, " Writing text example\r\n\n" );
    ipsdisplay_fill_screen ( &ipsdisplay, IPSDISPLAY_COLOR_BLACK );
    Delay_ms ( 1000 );
    start_pt.x = 5;
    start_pt.y = 70;
    ipsdisplay_write_string ( &ipsdisplay, start_pt, "      MIKROE      ", IPSDISPLAY_COLOR_RED );
    start_pt.y += 20;
    ipsdisplay_write_string ( &ipsdisplay, start_pt, " IPS display Click", IPSDISPLAY_COLOR_RED );
    start_pt.y += 20;
    ipsdisplay_write_string ( &ipsdisplay, start_pt, "     135x240px    ", IPSDISPLAY_COLOR_RED );
    start_pt.y += 20;
    ipsdisplay_write_string ( &ipsdisplay, start_pt, "ST7789V controller", IPSDISPLAY_COLOR_RED );
    start_pt.y += 20;
    ipsdisplay_write_string ( &ipsdisplay, start_pt, "   TEST EXAMPLE   ", IPSDISPLAY_COLOR_RED );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );

    log_printf( &logger, " RGB fill screen example\r\n\n" );
    ipsdisplay_fill_screen ( &ipsdisplay, IPSDISPLAY_COLOR_RED );
    Delay_ms ( 1000 );
    ipsdisplay_fill_screen ( &ipsdisplay, IPSDISPLAY_COLOR_LIME );
    Delay_ms ( 1000 );
    ipsdisplay_fill_screen ( &ipsdisplay, IPSDISPLAY_COLOR_BLUE );
    Delay_ms ( 1000 );

    log_printf( &logger, " Drawing objects example\r\n\n" );
    ipsdisplay_fill_screen ( &ipsdisplay, IPSDISPLAY_COLOR_BLACK );
    Delay_ms ( 1000 );
    start_pt.x = IPSDISPLAY_POS_WIDTH_MIN;
    start_pt.y = IPSDISPLAY_POS_HEIGHT_MIN;
    end_pt.x = IPSDISPLAY_POS_WIDTH_MAX;
    end_pt.y = IPSDISPLAY_POS_HEIGHT_MAX;
    ipsdisplay_draw_line ( &ipsdisplay, start_pt, end_pt, IPSDISPLAY_COLOR_BLUE );
    Delay_ms ( 1000 );
    start_pt.x = IPSDISPLAY_POS_WIDTH_MAX;
    start_pt.y = IPSDISPLAY_POS_HEIGHT_MIN;
    end_pt.x = IPSDISPLAY_POS_WIDTH_MIN;
    end_pt.y = IPSDISPLAY_POS_HEIGHT_MAX;
    ipsdisplay_draw_line ( &ipsdisplay, start_pt, end_pt, IPSDISPLAY_COLOR_BLUE );
    Delay_ms ( 1000 );
    start_pt.x = 35;
    start_pt.y = 40;
    end_pt.x = 100;
    end_pt.y = 100;
    ipsdisplay_draw_rectangle ( &ipsdisplay, start_pt, end_pt, IPSDISPLAY_COLOR_CYAN );
    Delay_ms ( 1000 );
    start_pt.y += 100;
    end_pt.y += 100;
    ipsdisplay_draw_rectangle ( &ipsdisplay, start_pt, end_pt, IPSDISPLAY_COLOR_CYAN );
    Delay_ms ( 1000 );
    start_pt.x = 67;
    start_pt.y = 120;
    ipsdisplay_draw_circle ( &ipsdisplay, start_pt, start_pt.x, IPSDISPLAY_COLOR_MAGENTA );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
}

Application Output

This Click board can be interfaced and monitored in two ways:

  • Application Output - Use the "Application Output" window in Debug mode for real-time data monitoring. Set it up properly by following this tutorial.
  • UART Terminal - Monitor data via the UART Terminal using a USB to UART converter. For detailed instructions, check out this tutorial.

Additional Notes and Information

The complete application code and a ready-to-use project are available through the NECTO Studio Package Manager for direct installation in the NECTO Studio. The application code can also be found on the MIKROE GitHub account.