LDC 1000 Click demo application is developed using the NECTO Studio, ensuring compatibility with mikroSDK's open-source libraries and tools. Designed for plug-and-play implementation and testing, the demo is fully compatible with all development, starter, and mikromedia boards featuring a mikroBUS™ socket.
- Author : MikroE Team
- Date : Dec 2019.
- Type : SPI type
This example showcases how to initialize and configure the logger and Click modules and read and display proximity and impendance data.
- MikroSDK.Board
- MikroSDK.Log
- Click.Ldc1000
ldc1000_cfg_setup
Config Object Initialization function.
void ldc1000_cfg_setup ( ldc1000_cfg_t *cfg );
ldc1000_init
Initialization function.
err_t ldc1000_init ( ldc1000_t *ctx, ldc1000_cfg_t *cfg );
ldc1000_default_cfg
Click Default Configuration function.
void ldc1000_default_cfg ( ldc1000_t *ctx );
ldc1000_get_proximity_data
This function reads the proximity data.
uint16_t ldc1000_get_proximity_data ( ldc1000_t *ctx );
ldc1000_get_inductance_data
This function reads the inductance data.
float ldc1000_get_inductance_data ( ldc1000_t *ctx );
ldc1000_get_int_input
This function reads the input voltage from the INT pin.
uint8_t ldc1000_get_int_input ( ldc1000_t *ctx );
This function initializes and configures the logger and Click modules. Configuration data is written to the: rp maximum/minimum, sensor frequency, LDC/Clock/Power registers.
void application_init ( )
{
log_cfg_t log_cfg;
ldc1000_cfg_t cfg;
/**
* Logger initialization.
* Default baud rate: 115200
* Default log level: LOG_LEVEL_DEBUG
* @note If USB_UART_RX and USB_UART_TX
* are defined as HAL_PIN_NC, you will
* need to define them manually for log to work.
* See @b LOG_MAP_USB_UART macro definition for detailed explanation.
*/
LOG_MAP_USB_UART( log_cfg );
log_init( &logger, &log_cfg );
log_info( &logger, "---- Application Init ----" );
// Click initialization.
ldc1000_cfg_setup( &cfg );
LDC1000_MAP_MIKROBUS( cfg, MIKROBUS_1 );
ldc1000_init( &ldc1000, &cfg );
Delay_100ms( );
ldc1000_default_cfg( &ldc1000 );
Delay_100ms( );
}
This function reads and displays proximity and impendance data every 10th of a second.
void application_task ( )
{
uint16_t proximity;
uint16_t inductance;
proximity = ldc1000_get_proximity_data( &ldc1000 );
inductance = ldc1000_get_inductance_data( &ldc1000 );
if ( ( ( proximity - old_proximity ) > LDC1000_SENSITIVITY ) &&
( ( old_proximity - proximity ) > LDC1000_SENSITIVITY ) )
{
log_printf( &logger, " * Proximity: %d \r\n", proximity );
log_printf( &logger, " * Impendance: %f uH\r\n", inductance );
old_proximity = proximity;
log_printf( &logger, "--------------------\r\n" );
Delay_100ms();
}
}
This Click board can be interfaced and monitored in two ways:
- Application Output - Use the "Application Output" window in Debug mode for real-time data monitoring. Set it up properly by following this tutorial.
- UART Terminal - Monitor data via the UART Terminal using a USB to UART converter. For detailed instructions, check out this tutorial.
The complete application code and a ready-to-use project are available through the NECTO Studio Package Manager for direct installation in the NECTO Studio. The application code can also be found on the MIKROE GitHub account.