NFC 4 Click demo application is developed using the NECTO Studio, ensuring compatibility with mikroSDK's open-source libraries and tools. Designed for plug-and-play implementation and testing, the demo is fully compatible with all development, starter, and mikromedia boards featuring a mikroBUS™ socket.
- Author : Stefan Filipovic
- Date : Jul 2021.
- Type : I2C/SPI type
This example demonstrates the use of NFC 4 Click board by reading MIFARE ISO/IEC 14443 type A tag UID.
- MikroSDK.Board
- MikroSDK.Log
- Click.NFC4
nfc4_cfg_setup
Config Object Initialization function.
void nfc4_cfg_setup ( nfc4_cfg_t *cfg );
nfc4_init
Initialization function.
err_t nfc4_init ( nfc4_t *ctx, nfc4_cfg_t *cfg );
nfc4_default_cfg
Click Default Configuration function.
err_t nfc4_default_cfg ( nfc4_t *ctx );
nfc4_get_mifare_tag_uid
This function reads the UID of a mifare tag.
err_t nfc4_get_mifare_tag_uid ( nfc4_t *ctx, uint8_t *uid, uint8_t *uid_len );
nfc4_write_register
This function writes a desired data to the selected register.
err_t nfc4_write_register ( nfc4_t *ctx, uint8_t reg, uint8_t data_in );
nfc4_read_register
This function reads a desired data from the selected register.
err_t nfc4_read_register ( nfc4_t *ctx, uint8_t reg, uint8_t *data_out );
Initializes the driver and performs the Click default configuration.
void application_init ( void )
{
log_cfg_t log_cfg; /**< Logger config object. */
nfc4_cfg_t nfc4_cfg; /**< Click config object. */
/**
* Logger initialization.
* Default baud rate: 115200
* Default log level: LOG_LEVEL_DEBUG
* @note If USB_UART_RX and USB_UART_TX
* are defined as HAL_PIN_NC, you will
* need to define them manually for log to work.
* See @b LOG_MAP_USB_UART macro definition for detailed explanation.
*/
LOG_MAP_USB_UART( log_cfg );
log_init( &logger, &log_cfg );
log_info( &logger, " Application Init " );
// Click initialization.
nfc4_cfg_setup( &nfc4_cfg );
NFC4_MAP_MIKROBUS( nfc4_cfg, MIKROBUS_1 );
err_t init_flag = nfc4_init( &nfc4, &nfc4_cfg );
if ( ( I2C_MASTER_ERROR == init_flag ) || ( SPI_MASTER_ERROR == init_flag ) )
{
log_error( &logger, " Application Init Error. " );
log_info( &logger, " Please, run program again... " );
for ( ; ; );
}
NFC4_SET_DATA_SAMPLE_EDGE;
if ( NFC4_ERROR == nfc4_default_cfg ( &nfc4 ) )
{
log_error( &logger, " Default Config Error. " );
log_info( &logger, " Please, run program again... " );
for ( ; ; );
}
log_info( &logger, " Application Task " );
}
If there's a tag detected, it reads its UID and displays it on the USB UART every 500ms.
void application_task ( void )
{
uint8_t tag_uid[ 10 ] = { 0 };
uint8_t uid_len = 0;
if( NFC4_OK == nfc4_get_mifare_tag_uid( &nfc4, tag_uid, &uid_len ) )
{
log_printf( &logger, " Tag UID: " );
for ( uint8_t cnt = 0; cnt < uid_len; cnt++ )
{
log_printf( &logger, "%.2X", ( uint16_t ) tag_uid[ cnt ] );
}
log_printf( &logger, "\r\n" );
Delay_ms ( 500 );
}
}
For testing purposes we used MIKROE-1475 - an RFiD tag 13.56MHz compliant with ISO14443-A standard.
This Click board can be interfaced and monitored in two ways:
- Application Output - Use the "Application Output" window in Debug mode for real-time data monitoring. Set it up properly by following this tutorial.
- UART Terminal - Monitor data via the UART Terminal using a USB to UART converter. For detailed instructions, check out this tutorial.
The complete application code and a ready-to-use project are available through the NECTO Studio Package Manager for direct installation in the NECTO Studio. The application code can also be found on the MIKROE GitHub account.