Skip to content

Latest commit

 

History

History

proximity12

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 

Proximity 12 Click

Proximity 12 Click demo application is developed using the NECTO Studio, ensuring compatibility with mikroSDK's open-source libraries and tools. Designed for plug-and-play implementation and testing, the demo is fully compatible with all development, starter, and mikromedia boards featuring a mikroBUS™ socket.


Click Library

  • Author : Stefan Filipovic
  • Date : Jun 2021.
  • Type : I2C type

Software Support

Example Description

This function demonstrates the use of Proximity 12 Click board.

Example Libraries

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Proximity12

Example Key Functions

  • proximity12_cfg_setup Config Object Initialization function.
void proximity12_cfg_setup ( proximity12_cfg_t *cfg );
  • proximity12_init Initialization function.
err_t proximity12_init ( proximity12_t *ctx, proximity12_cfg_t *cfg );
  • proximity12_default_cfg Click Default Configuration function.
err_t proximity12_default_cfg ( proximity12_t *ctx );
  • proximity12_read_proximity This function reads the raw proximity value measured by the Click board.
err_t proximity12_read_proximity ( proximity12_t *ctx, uint16_t *prox_data );
  • proximity12_read_als This function reads all als data measured by the Click board.
err_t proximity12_read_als ( proximity12_t *ctx, proximity12_als_data_t *als );
  • proximity12_set_led_isink This function sets the LEDs sink scaler and current values.
err_t proximity12_set_led_isink ( proximity12_t *ctx, uint8_t scaler, uint8_t current );

Application Init

Initializes the driver and performs the Click default configuration.

void application_init ( void )
{
    log_cfg_t log_cfg;                  /**< Logger config object. */
    proximity12_cfg_t proximity12_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    Delay_ms ( 100 );
    log_info( &logger, " Application Init " );

    // Click initialization.
    proximity12_cfg_setup( &proximity12_cfg );
    PROXIMITY12_MAP_MIKROBUS( proximity12_cfg, MIKROBUS_1 );
    err_t init_flag = proximity12_init( &proximity12, &proximity12_cfg );
    if ( I2C_MASTER_ERROR == init_flag ) 
    {
        log_error( &logger, " Application Init Error. " );
        log_info( &logger, " Please, run program again... " );

        for ( ; ; );
    }
    Delay_ms ( 100 );
    
    init_flag = proximity12_default_cfg ( &proximity12 );
    if ( PROXIMITY12_ERROR == init_flag ) 
    {
        log_error( &logger, " Default Cfg Error. " );
        log_info( &logger, " Please, run program again... " );

        for ( ; ; );
    }
    log_info( &logger, " Application Task " );
}

Application Task

Reads the proximity and ALS values and displays the results on the USB UART approximately every 100ms.

void application_task ( void )
{
    uint16_t prox_data = 0;
    proximity12_als_data_t als;
    err_t error_flag = proximity12_read_proximity ( &proximity12, &prox_data );
    error_flag |= proximity12_read_als ( &proximity12, &als );

    if ( PROXIMITY12_OK == error_flag )
    {
        log_printf( &logger, " - Proximity data -\r\n" );
        log_printf( &logger, " Proximity: %u\r\n", prox_data );
        log_printf( &logger, " - ALS data -\r\n" );
        log_printf( &logger, " Clear: %lu - Red: %lu - Green: %lu - Blue: %lu\r\n", als.clear,
                                                                                    als.red,
                                                                                    als.green, 
                                                                                    als.blue );
        
        log_printf( &logger, " Leakage: %lu - Wideband: %lu - IR1: %lu - IR2: %lu\r\n\r\n", als.leakage,
                                                                                            als.wideband,
                                                                                            als.ir1, 
                                                                                            als.ir2 );
    }
    Delay_ms ( 100 );
}

Application Output

This Click board can be interfaced and monitored in two ways:

  • Application Output - Use the "Application Output" window in Debug mode for real-time data monitoring. Set it up properly by following this tutorial.
  • UART Terminal - Monitor data via the UART Terminal using a USB to UART converter. For detailed instructions, check out this tutorial.

Additional Notes and Information

The complete application code and a ready-to-use project are available through the NECTO Studio Package Manager for direct installation in the NECTO Studio. The application code can also be found on the MIKROE GitHub account.