SRAM Click demo application is developed using the NECTO Studio, ensuring compatibility with mikroSDK's open-source libraries and tools. Designed for plug-and-play implementation and testing, the demo is fully compatible with all development, starter, and mikromedia boards featuring a mikroBUS™ socket.
- Author : Mihajlo Djordjevic
- Date : Dec 2019.
- Type : SPI type
SRAM Click write and read data from 23LC1024 Serial RAM device.
- MikroSDK.Board
- MikroSDK.Log
- Click.Sram
sram_cfg_setup
Config Object Initialization function.
void sram_cfg_setup ( sram_cfg_t *cfg );
sram_init
Initialization function.
err_t sram_init ( sram_t *ctx, sram_cfg_t *cfg );
sram_default_cfg
Click Default Configuration function.
void sram_default_cfg ( sram_t *ctx );
sram_write_byte
Function write the 8-bit data to the target 24-bit register address of 23LC1024 chip.
void sram_write_byte ( sram_t *ctx, uint32_t reg_address, uint8_t write_data );
sram_read_byte
Function read the 8-bit data to the target 24-bit register address of 23LC1024 chip.
uint8_t sram_read_byte ( sram_t *ctx, uint32_t reg_address );
Application Init performs Logger and Click initialization.
void application_init ( void )
{
log_cfg_t log_cfg;
sram_cfg_t cfg;
/**
* Logger initialization.
* Default baud rate: 115200
* Default log level: LOG_LEVEL_DEBUG
* @note If USB_UART_RX and USB_UART_TX
* are defined as HAL_PIN_NC, you will
* need to define them manually for log to work.
* See @b LOG_MAP_USB_UART macro definition for detailed explanation.
*/
LOG_MAP_USB_UART( log_cfg );
log_init( &logger, &log_cfg );
log_printf( &logger, "--------------------------\r\n" );
log_printf( &logger, " Application Init\r\n" );
Delay_ms ( 100 );
// Click initialization.
sram_cfg_setup( &cfg );
SRAM_MAP_MIKROBUS( cfg, MIKROBUS_1 );
sram_init( &sram, &cfg );
log_printf( &logger, "--------------------------\r\n" );
log_printf( &logger, " ------ SRAM Click ----- \r\n" );
log_printf( &logger, "--------------------------\r\n" );
Delay_ms ( 1000 );
log_printf( &logger, " -- Initialization done --\r\n" );
log_printf( &logger, "--------------------------\r\n" );
Delay_ms ( 1000 );
}
SRAM Click communicates with register via SPI protocol by write data to and read data from 23LC1024 Serial RAM device. Results are being sent to the UART where you can track their changes. All data logs on USB UART for aproximetly every 5 sec.
void application_task ( void )
{
log_printf( &logger, " Writing text :\r\n" );
for ( n_cnt = 0; n_cnt < 16; n_cnt++ )
{
sram_write_byte( &sram, n_cnt, send_buffer[ n_cnt ] );
Delay_ms ( 100 );
log_printf( &logger, "%c", send_buffer[ n_cnt ] );
mem_data[ n_cnt ] = sram_read_byte( &sram, n_cnt );
}
log_printf( &logger, "\r\n" );
log_printf( &logger, " Read text :\r\n" );
log_printf( &logger, "%s", &mem_data[ 0 ] );
log_printf( &logger, "\r\n" );
log_printf( &logger, "--------------------------\r\n" );
Delay_ms ( 1000 );
}
This Click board can be interfaced and monitored in two ways:
- Application Output - Use the "Application Output" window in Debug mode for real-time data monitoring. Set it up properly by following this tutorial.
- UART Terminal - Monitor data via the UART Terminal using a USB to UART converter. For detailed instructions, check out this tutorial.
The complete application code and a ready-to-use project are available through the NECTO Studio Package Manager for direct installation in the NECTO Studio. The application code can also be found on the MIKROE GitHub account.