-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathchar_thermal_r.py
317 lines (275 loc) · 11.3 KB
/
char_thermal_r.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
#-- copmute self and mutual thermal resistance by calling HotSpot
from system import System_25D
import os
import sys
import numpy as np
import csv
import time
import math
import config
import configparser
import util.fill_space
import subprocess
from collections import defaultdict
#-- remove blank lines in a file and dump to a new file
def rm_blank_line(filein, fileout):
with open(filein, 'r') as r, open(fileout, 'w') as o:
for line in r:
#strip() function
if line.strip():
o.write(line)
r.close()
o.close()
return
#-- read csv file
#-- format: entries separated by tabs
def readcsvfile(file):
entries = list(csv.reader(open(file, 'r'), delimiter='\t'))
return entries
#-- read floorplan file
#-- return a list of chiplets info (name, coordinate, size)
#-- flp file format: unitname\tdx\tdy\tx0\ty0
def readflpfile(flpfile):
global intp_width, intp_height #-- interposer's width and height
blocks = list(csv.reader(open(flpfile, 'r'), delimiter='\t'))
max_x = 0
max_y = 0
i = 0
chiplets_name = []
chiplets_left = np.array([])
chiplets_width = np.array([])
chiplets_bottom = np.array([])
chiplets_height = np.array([])
for e in blocks:
#-- skip blank lines
if len(blocks[i]) == 0:
i += 1
continue
#-- skip comment lines
if blocks[i][0][0] == '#':
i += 1
continue
chiplets_name += [blocks[i][0]]
left = float(blocks[i][3])
chiplets_left = np.append(chiplets_left, left)
width = float(blocks[i][1])
chiplets_width = np.append(chiplets_width, width)
bottom = float(blocks[i][4])
chiplets_bottom = np.append(chiplets_bottom, bottom)
height = float(blocks[i][2])
chiplets_height = np.append(chiplets_height, height)
right = left + width
top = bottom + height
if max_x < right:
max_x = right
if max_y < top:
max_y = top
i += 1
intp_width = max_x
intp_height = max_y
return chiplets_name, chiplets_left, chiplets_width, chiplets_bottom, chiplets_height
#-- write chiplet config file
def write_config(configname, syspath, intp_size, width, height, x, y):
with open (configname, 'w') as Cfg:
Cfg.write("[general]\n")
Cfg.write("path = " + syspath + "\n")
Cfg.write("placer_granularity = 1\n")
Cfg.write("initial_placement = given\n")
Cfg.write("decay = 0.8\n")
Cfg.write("\n")
Cfg.write("[interposer]\n")
Cfg.write("# we will support passive, active, (photonic), and EMIB options.\n")
Cfg.write("intp_type = passive\n")
Cfg.write("intp_size = " + str(intp_size) + '\n')
Cfg.write("link_type = nppl\n")
Cfg.write("\n")
Cfg.write("[chiplets]\n")
Cfg.write("chiplet_count = 1\n")
Cfg.write("widths = " + '\t' + str(width) + '\n')
Cfg.write("heights = " + '\t' + str(height) + '\n')
Cfg.write("powers = " + '\t' + str(100) + '\n')
Cfg.write("x = " + str(x) + '\n')
Cfg.write("y = " + str(y) + '\n')
Cfg.write("\n")
Cfg.write("connections = " + str(0) +'\n')
return
##-- characterize self thermal resistance of a chiplet
#def char_self_r(path, sys_name, chiplet_name, intp_size, chiplet_width, chiplet_height, chiplet_power):
# #global intp_width, intp_height #-- [mm]
# INTP_X_GRID_COUNT = 64
# INTP_Y_GRID_COUNT = 64
# KTOC = 273.15
# TAMB = 45.0
# CHAR_STEP = 0
# CHIPLET_CHAR_POWER = 100.0
# intp_width = intp_size
# intp_height = intp_size
#
# config_name = sys_name + '_' + chiplet_name + '.cfg'
#
# x_start = 0.5*chiplet_width + 0.1
# x_end = 0.5*intp_width + 0.1
# x_step = 0.99*(x_end - x_start)
# y_start = 0.5*chiplet_height + 0.1
# y_end = 0.5*intp_height + 0.1
# y_step = 0.99*(y_end - y_start)
#
# x_arr = np.array([])
# y_arr = np.array([])
# rself_arr = np.array([])
# for y in np.arange(y_start, y_end, y_step):
# for x in np.arange(x_start, x_end, x_step):
# x_arr = np.append(x_arr, x)
# y_arr = np.append(y_arr, y)
#
# write_config(config_name, path, intp_size, chiplet_width, chiplet_height, x, y)
# system = config.read_config(config_name)
# system.gen_flp('step_'+str(CHAR_STEP))
# system.gen_ptrace('step_'+str(CHAR_STEP))
# print("#info# Characterizing R_self for chiplet group", chiplet_name, "at [",x,",", y, "] [mm]")
# chiplet_temp = system.run_hotspot('step_'+str(CHAR_STEP))
# chiplet_temp_diff = chiplet_temp - TAMB
# rself = chiplet_temp_diff / chiplet_power
# rself_arr = np.append(rself_arr, rself)
#
#
# #-- following are to be used in table loop-up
# x1 = np.arange(x_start, x_end, x_step)
# y1 = np.arange(y_start, y_end, y_step)
# rself_new = np.reshape(rself_arr, (-1, len(y1)))
#
# #-- convert [mm] to [m]
# x_arr *= 1.0e-3
# y_arr *= 1.0e-3
# xyr_arr = np.vstack((x_arr, y_arr, rself_arr)).T
#
# #-- save self R to file
# np.savetxt(path+chiplet_name+".rself", xyr_arr, fmt='%e', delimiter='\t')
# print("#info# R_self characterization done for chiplet group:", chiplet_name, ". Saved to file:", path+chiplet_name+".rself")
#
# return # end of char_self_r()
def char_distributed_r(path, sys_name, chiplet_name, intp_size, chiplet_width, chiplet_height, chiplet_power):
#global intp_width, intp_height
# INTP_X_GRID_COUNT = 64
# INTP_Y_GRID_COUNT = 64
# KTOC = 273.15
# TAMB = 45.0
CHAR_STEP = 0
CHIPLET_CHAR_POWER = 100.0
intp_width = intp_size
intp_height = intp_size
config_name = sys_name + '_' + chiplet_name + '.cfg'
xx_start = 0.5*chiplet_width + 0.1
xx_end = intp_width - 0.5*chiplet_width - 0.1
xx_step = 0.99*(xx_end - xx_start)
yy_start = 0.5*chiplet_height + 0.1
yy_end = intp_height - 0.5*chiplet_height - 0.1
yy_step = 0.99*(yy_end - yy_start)
location = 1 #-- location 1 is left bottom(1st quadrent), location 2 is right bottom(2nd quadrent), location 3 is left up(4th quadrent), location 4 is right up(3th quadrent)
for yy in np.arange(yy_start, yy_end, yy_step):
for xx in np.arange(xx_start, xx_end, xx_step):
Dx = np.array([])
Dy = np.array([])
rmut = np.array([])
#x = 0.5*chiplet_width + 0.1
#y = 0.5*chiplet_height + 0.1
write_config(config_name, path, intp_size, chiplet_width, chiplet_height, xx, yy)
system = config.read_config(config_name)
system.gen_flp('step_'+str(CHAR_STEP))
system.gen_ptrace('step_'+str(CHAR_STEP))
print("#info# Characterizing R_distributed for chiplet group", chiplet_name, "at [",xx,",", yy, "] [mm]")
chiplet_temp = system.run_hotspot('step_'+str(CHAR_STEP))
#-- find hotspot's interposer grid list
#-- remove the blank lines in grid.steady file
#rm_blank_line(path+"step_"+str(CHAR_STEP)+".grid.steady", path+"step_"+str(CHAR_STEP)+".grid.steady1")
rm_blank_line(path+"step_"+str(CHAR_STEP)+".grid.steady", path+"step_"+str(CHAR_STEP)+".grid.steady" + str(location))
grid_list = readcsvfile(path+"step_"+str(CHAR_STEP)+".grid.steady"+str(location))
grid_columns = list(zip(*grid_list))
#-- loop through hotspot grids
x_grid_count = INTP_X_GRID_COUNT
y_grid_count = INTP_Y_GRID_COUNT
# rmut = np.array([])
# c_center_x = 1.0e-3*xx
# c_center_y = 1.0e-3*yy
c_center_x = xx
c_center_y = yy
k = 0
for i in range(y_grid_count):
for j in range(x_grid_count):
# x = 1.0e-3*j*intp_width/x_grid_count
# y = 1.0e-3*intp_height*(1.0 - i/y_grid_count)
x = j*intp_width/x_grid_count
y = intp_height*(1.0 - i/y_grid_count)
dx = x - c_center_x
dy = y - c_center_y
Dx = np.append(Dx, dx)
Dy = np.append(Dy, dy)
dt = float(grid_columns[1][k]) - KTOC - TAMB
ddt = dt/chiplet_power
rmut = np.append(rmut, ddt)
assert(0.0 <= dt)
k += 1
assert(k == x_grid_count*y_grid_count)
assert(Dx.ndim == rmut.ndim)
assert(Dx.shape == rmut.shape)
newdr = np.vstack((Dx, Dy, rmut)).T
#-- save to csv file
#np.savetxt(path+chiplet_name+".rmutu", dr_sorted, fmt='%e', delimiter='\t')
#np.savetxt(path+chiplet_name+".rmutu", newdr, fmt='%e', delimiter='\t')
np.savetxt(path+chiplet_name+"loc"+str(location)+".distributedR", newdr, fmt='%e', delimiter='\t')
print("#info# R_distributed characterization done for chiplet group at location"+str(location)+":", chiplet_name, "Saved to file:", path+chiplet_name+"loc"+str(location)+".distributedR")
location += 1
return #-- end of char_distributed_r()
def clean_hotspot(path, stepfilename):
os.system('rm ' + path + stepfilename + '{*.flp,*.lcf,*.ptrace,*.steady}')
def unique_WH(chiplets_widths, chiplets_heights):
d = defaultdict(int)
seen = set()
idx = 0
unique_widths, unique_heights = [], []
for w, h in zip(chiplets_widths, chiplets_heights):
if (w, h) not in seen:
d[(w, h)] = idx
idx += 1
seen.add((w, h))
unique_widths.append(w)
unique_heights.append(h)
return d, unique_widths, unique_heights #-- d is a dictionary: {key: value} = {(w, h):group index}
if __name__ == "__main__":
if len(sys.argv) != 2:
print("Usage: python3 char_thermal_r.py <config_file>")
print("<config_file>: TAP2.5D config file, e.g. configs/sys_micro150.cfg")
sys.exit(1)
#-- assume TAP2.5D config file is located in a directory
cfgfile = sys.argv[1]
sys_name = os.path.splitext(cfgfile)[0]
#-- global consts
# INTP_X_GRID_COUNT = 64
# INTP_Y_GRID_COUNT = 64
INTP_X_GRID_COUNT = 128
INTP_Y_GRID_COUNT = 128
KTOC = 273.15
TAMB = 45.0
CHAR_STEP = 0
CHIPLET_CHAR_POWER = 100.0
#-- read in TAP2.5D config file, which contains chiplets info
insys = config.read_config(cfgfile)
chiplet_count = insys.chiplet_count
intp_size = insys.intp_size
intp_width = intp_size
intp_height = intp_size
chiplets_width = insys.width
chiplets_height = insys.height
chiplets_power = insys.power # not used in characterization
sys_path = insys.path
WH_dict, unique_widths, unique_heights = unique_WH(chiplets_width, chiplets_height)
chiplet_groupnum = len(WH_dict)
#-- create a list of unique sizes of chiplets
tstart = time.time()
for i in range(0, chiplet_groupnum, 1):
chiplet_name = "Chiplet" + str(i)
# char_self_r(sys_path, sys_name, chiplet_name, intp_size, unique_widths[i], unique_heights[i], CHIPLET_CHAR_POWER)
char_distributed_r(sys_path, sys_name, chiplet_name, intp_size, unique_widths[i], unique_heights[i], CHIPLET_CHAR_POWER)
tend = time.time()
characterization_time = tend - tstart
print("characterization_time=",characterization_time)