-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinferenceSpeed.py
146 lines (120 loc) · 4.92 KB
/
inferenceSpeed.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import argparse
from collections import defaultdict, deque
import cv2
import numpy as np
from ultralytics import YOLO
import supervision as sv
SOURCE = np.array([[1252, 787], [2298, 803], [5039, 2159], [-550, 2159]])
TARGET_WIDTH = 25
TARGET_HEIGHT = 250
TARGET = np.array(
[
[0, 0],
[TARGET_WIDTH - 1, 0],
[TARGET_WIDTH - 1, TARGET_HEIGHT - 1],
[0, TARGET_HEIGHT - 1],
]
)
class ViewTransformer:
def __init__(self, source: np.ndarray, target: np.ndarray) -> None:
source = source.astype(np.float32)
target = target.astype(np.float32)
self.m = cv2.getPerspectiveTransform(source, target)
def transform_points(self, points: np.ndarray) -> np.ndarray:
if points.size == 0:
return points
reshaped_points = points.reshape(-1, 1, 2).astype(np.float32)
transformed_points = cv2.perspectiveTransform(reshaped_points, self.m)
return transformed_points.reshape(-1, 2)
def parse_arguments() -> argparse.Namespace:
parser = argparse.ArgumentParser(
description="Vehicle Speed Estimation using Ultralytics and Supervision"
)
parser.add_argument(
"--source_video_path",
required=True,
help="Path to the source video file",
type=str,
)
parser.add_argument(
"--target_video_path",
required=True,
help="Path to the target video file (output)",
type=str,
)
parser.add_argument(
"--confidence_threshold",
default=0.3,
help="Confidence threshold for the model",
type=float,
)
parser.add_argument(
"--iou_threshold", default=0.7, help="IOU threshold for the model", type=float
)
return parser.parse_args()
if __name__ == "__main__":
args = parse_arguments()
video_info = sv.VideoInfo.from_video_path(video_path=args.source_video_path)
model = YOLO("yolov8x.pt")
byte_track = sv.ByteTrack(
frame_rate=video_info.fps, track_activation_threshold=args.confidence_threshold
)
thickness = sv.calculate_optimal_line_thickness(
resolution_wh=video_info.resolution_wh
)
text_scale = sv.calculate_optimal_text_scale(resolution_wh=video_info.resolution_wh)
box_annotator = sv.BoxAnnotator(thickness=thickness)
label_annotator = sv.LabelAnnotator(
text_scale=text_scale,
text_thickness=thickness,
text_position=sv.Position.BOTTOM_CENTER,
)
trace_annotator = sv.TraceAnnotator(
thickness=thickness,
trace_length=video_info.fps * 2,
position=sv.Position.BOTTOM_CENTER,
)
frame_generator = sv.get_video_frames_generator(source_path=args.source_video_path)
polygon_zone = sv.PolygonZone(polygon=SOURCE)
view_transformer = ViewTransformer(source=SOURCE, target=TARGET)
coordinates = defaultdict(lambda: deque(maxlen=video_info.fps))
with sv.VideoSink(args.target_video_path, video_info) as sink:
for frame in frame_generator:
result = model(frame)[0]
detections = sv.Detections.from_ultralytics(result)
detections = detections[detections.confidence > args.confidence_threshold]
detections = detections[polygon_zone.trigger(detections)]
detections = detections.with_nms(threshold=args.iou_threshold)
detections = byte_track.update_with_detections(detections=detections)
points = detections.get_anchors_coordinates(
anchor=sv.Position.BOTTOM_CENTER
)
points = view_transformer.transform_points(points=points).astype(int)
for tracker_id, [_, y] in zip(detections.tracker_id, points):
coordinates[tracker_id].append(y)
labels = []
for tracker_id in detections.tracker_id:
if len(coordinates[tracker_id]) < video_info.fps / 2:
labels.append(f"#{tracker_id}")
else:
coordinate_start = coordinates[tracker_id][-1]
coordinate_end = coordinates[tracker_id][0]
distance = abs(coordinate_start - coordinate_end)
time = len(coordinates[tracker_id]) / video_info.fps
speed = distance / time * 3.6
labels.append(f"#{tracker_id} {int(speed)} km/h")
annotated_frame = frame.copy()
annotated_frame = trace_annotator.annotate(
scene=annotated_frame, detections=detections
)
annotated_frame = box_annotator.annotate(
scene=annotated_frame, detections=detections
)
annotated_frame = label_annotator.annotate(
scene=annotated_frame, detections=detections, labels=labels
)
sink.write_frame(annotated_frame)
cv2.imshow("frame", annotated_frame)
if cv2.waitKey(1) & 0xFF == ord("q"):
break
cv2.destroyAllWindows()