-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrnn.py
212 lines (153 loc) · 8.73 KB
/
rnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
# -*- coding: utf-8 -*-
import sys
reload(sys)
sys.setdefaultencoding('utf8')
import numpy as np
import json
class RNN:
def __init__(self, args):
self.hidden_size = args['hidden_size']
self.seq_length = args['seq_length']
self.learning_rate = args['learning_rate']
self.data = args['data']
self.chars = list(set(self.data))
self.data_size = len(self.data)
self.vocab_size = len(self.chars)
print 'Data has {} characters, {} unique.'.format(self.data_size, self.vocab_size)
# NN Parameters
self.param_w_xh = args.get('param_w_xh', np.random.randn(self.hidden_size, self.vocab_size) * 0.01) # Input to hidden (U)
self.param_w_hh = args.get('param_w_hh', np.random.randn(self.hidden_size, self.hidden_size) * 0.01) # Hidden to hidden (W)
self.param_w_hy = args.get('param_w_hy', np.random.randn(self.vocab_size, self.hidden_size) * 0.01) # Hidden to output (V)
self.bias_hidden = args.get('bias_hidden', np.zeros((self.hidden_size, 1))) # hidden bias
self.bias_output_y = args.get('bias_output_y', np.zeros((self.vocab_size, 1))) # output bias
self.mem_w_xh = args.get('mem_w_xh', np.zeros_like(self.param_w_xh))
self.mem_w_hh = args.get('mem_w_hh', np.zeros_like(self.param_w_hh))
self.mem_w_hy = args.get('mem_w_hy', np.zeros_like(self.param_w_hy))
self.mem_bias_hidden = args.get('mem_bias_hidden', np.zeros_like(self.bias_hidden))
self.mem_bias_output_y = args.get('mem_bias_output_y', np.zeros_like(self.bias_output_y))
self.smooth_loss = args.get('smooth_loss', -np.log(1.0 / self.vocab_size) * self.seq_length) # cross-entropy loss
self.char_to_ix = args.get('char_to_ix', {char: i for i, char in enumerate(self.chars)})
self.ix_to_char = args.get('ix_to_char', {i: char for i, char in enumerate(self.chars)})
self.pointer = args.get('pointer', 0) # Data pointer
def step(self, hidden=None):
if (self.pointer + self.seq_length + 1) >= len(self.data) or hidden == None:
hidden = np.zeros((self.hidden_size, 1)) # reset RNN memory
self.pointer = 0 # go from start of data
inputs = [self.char_to_ix[char] for char in self.data[self.pointer:self.pointer + self.seq_length]]
targets = [self.char_to_ix[char] for char in self.data[self.pointer + 1:self.pointer + self.seq_length + 1]]
# input vector, output vector, hidden vector, softmax probablity, loss
input_xs, output_ys, hidden_s, probs, loss = self.forward(inputs, targets, hidden)
grad_w_xh, grad_w_hh, grad_w_hy, grad_bias_hidden, grad_bias_output_y = self.backward(inputs, targets, input_xs, hidden_s, probs)
# CLIP THEM UP!
# clip to mitigate exploding gradients
for grad_param in [grad_w_xh, grad_w_hh, grad_w_hy, grad_bias_hidden, grad_bias_output_y]:
np.clip(grad_param, -5, 5, out=grad_param)
# Parameter update
for param, grad_param, memory in zip(
[self.param_w_xh, self.param_w_hh, self.param_w_hy, self.bias_hidden, self.bias_output_y],
[grad_w_xh, grad_w_hh, grad_w_hy, grad_bias_hidden, grad_bias_output_y],
[self.mem_w_xh, self.mem_w_hh, self.mem_w_hy, self.mem_bias_hidden, self.mem_bias_output_y]
):
memory += grad_param * grad_param
param += -self.learning_rate * grad_param / np.sqrt(memory + 1e-8)
self.pointer += self.seq_length
hidden = hidden_s[len(inputs) - 1]
self.smooth_loss = self.smooth_loss * 0.999 + loss * 0.001
return inputs, hidden, self.smooth_loss
def forward(self, inputs, targets, hidden_prev):
# s = vector
input_xs = {}
hidden_s = {}
output_ys = {}
probs = {} # probablity
hidden_s[-1] = np.copy(hidden_prev)
loss = 0
for i in xrange(len(inputs)):
# Creating an equivalent one hot vector for each inputs
input_xs[i] = np.zeros((self.vocab_size, 1))
input_xs[i][inputs[i]] = 1
# Calculating the current hidden state using the previous hiden state through tanh
hidden_s[i] = self.tanh(self.param_w_xh, input_xs[i], self.param_w_hh, hidden_s[i - 1], self.bias_hidden)
output_ys[i] = np.dot(self.param_w_hy, hidden_s[i]) + self.bias_output_y
probs[i] = self.softmax(output_ys[i])
loss += -np.log(probs[i][targets[i], 0])
return input_xs, output_ys, hidden_s, probs, loss
# backprop
def backward(self, inputs, targets, input_xs, hidden_s, probs):
grad_w_xh = np.zeros_like(self.param_w_xh)
grad_w_hh = np.zeros_like(self.param_w_hh)
grad_w_hy = np.zeros_like(self.param_w_hy)
grad_bias_hidden = np.zeros_like(self.bias_hidden)
grad_bias_output_y = np.zeros_like(self.bias_output_y)
grad_hidden_next = np.zeros_like(hidden_s[0])
for i in reversed(xrange(len(inputs))):
grad_output_y = np.copy(probs[i])
grad_output_y[targets[i]] -= 1
grad_w_hy += np.dot(grad_output_y, hidden_s[i].T)
grad_bias_output_y += grad_output_y
grad_hidden = np.dot(self.param_w_hy.T, grad_output_y) + grad_hidden_next
grad_hidden_raw = (1 - hidden_s[i] * hidden_s[i]) * grad_hidden # backprop through tanh nonlinearity
grad_bias_hidden += grad_hidden_raw
grad_w_xh += np.dot(grad_hidden_raw, input_xs[i].T)
grad_w_hh += np.dot(grad_hidden_raw, hidden_s[i - 1].T)
grad_hidden_next = np.dot(self.param_w_hh.T, grad_hidden_raw)
return grad_w_xh, grad_w_hh, grad_w_hy, grad_bias_hidden, grad_bias_output_y
def generate(self, hidden, seed_ix, chars_counter):
input_x = np.zeros((self.vocab_size, 1))
input_x[seed_ix] = 1
ixes = []
for i in xrange(chars_counter):
hidden = np.tanh(np.dot(self.param_w_xh, input_x) + np.dot(self.param_w_hh, hidden) + self.bias_hidden) # tanh
output_y = np.dot(self.param_w_hy, hidden) + self.bias_output_y
prob = self.softmax(output_y)
ix = np.random.choice(range(self.vocab_size), p=prob.ravel())
input_x = np.zeros((self.vocab_size, 1))
input_x[ix] = 1
ixes.append(ix)
return [self.ix_to_char[ix] for ix in ixes]
def softmax(self, output_y):
return np.exp(output_y) / np.sum(np.exp(output_y)) # softmax function
def tanh(self, param_w_xh, input_x, param_w_hh, hidden, bias_hidden):
return np.tanh(np.dot(param_w_xh, input_x) + np.dot(param_w_hh, hidden) + bias_hidden) # tanh
def save_model(self):
model = {
'hidden_size': self.hidden_size,
'seq_length': self.seq_length,
'learning_rate': self.learning_rate,
'data': self.data,
'chars': self.chars,
'data_size': self.data_size,
'vocab_size': self.vocab_size,
'param_w_xh': self.param_w_xh.tolist(),
'param_w_hh': self.param_w_hh.tolist(),
'param_w_hy': self.param_w_hy.tolist(),
'bias_hidden': self.bias_hidden.tolist(),
'bias_output_y': self.bias_output_y.tolist(),
'mem_w_xh': self.mem_w_xh.tolist(),
'mem_w_hh': self.mem_w_hh.tolist(),
'mem_w_hy': self.mem_w_hy.tolist(),
'mem_bias_hidden': self.mem_bias_hidden.tolist(),
'mem_bias_output_y': self.mem_bias_output_y.tolist(),
'smooth_loss': self.smooth_loss,
'char_to_ix': self.char_to_ix,
'ix_to_char': self.ix_to_char,
'pointer': self.pointer,
}
with open('model.json', 'w') as jsonfile:
json.dump(model, jsonfile, indent=4, separators=(',', ': '))
@classmethod
def load_model(cls, filename):
with open(filename) as jsonfile:
model = json.load(jsonfile)
model['param_w_xh'] = np.array(model['param_w_xh'])
model['param_w_hh'] = np.array(model['param_w_hh'])
model['param_w_hy'] = np.array(model['param_w_hy'])
model['bias_hidden'] = np.array(model['bias_hidden'])
model['bias_output_y'] = np.array(model['bias_output_y'])
model['mem_w_xh'] = np.array(model['mem_w_xh'])
model['mem_w_hh'] = np.array(model['mem_w_hh'])
model['mem_w_hy'] = np.array(model['mem_w_hy'])
model['mem_bias_hidden'] = np.array(model['mem_bias_hidden'])
model['mem_bias_output_y'] = np.array(model['mem_bias_output_y'])
model['ix_to_char'] = {int(ix): char for ix, char in model['ix_to_char'].iteritems()}
return cls(model)