|
1 | 1 | import math |
2 | 2 | from typing import Sequence |
3 | 3 |
|
| 4 | +import numpy as np |
4 | 5 | from geocompy.data import Angle, Coordinate |
5 | 6 |
|
6 | 7 |
|
@@ -57,3 +58,328 @@ def preliminary_resection( |
57 | 58 | Angle(180, "deg") - vs1, |
58 | 59 | ds1 |
59 | 60 | ) |
| 61 | + |
| 62 | + |
| 63 | +def _matrices_resection_horizontal( |
| 64 | + measurements: list[tuple[Angle, Angle, float]], |
| 65 | + targets: list[Coordinate], |
| 66 | + station: Coordinate, |
| 67 | + orientation: Angle |
| 68 | +) -> tuple[list[list[float]], list[float]]: |
| 69 | + design_matrix: list[list[float]] = [] |
| 70 | + observation_vector: list[float] = [] |
| 71 | + |
| 72 | + for (hz, v, d), coord in zip(measurements, targets): |
| 73 | + dr0 = coord - station |
| 74 | + dx0, dy0, dz0 = dr0 |
| 75 | + hz0, v0, dsd0 = dr0.to_polar() |
| 76 | + dhd0 = dr0.to_2d().length() |
| 77 | + |
| 78 | + hz_o = (hz + orientation).normalized() |
| 79 | + design_matrix.append( |
| 80 | + [ |
| 81 | + -1, |
| 82 | + -dx0 / dhd0**2, |
| 83 | + dy0 / dhd0**2 |
| 84 | + ] |
| 85 | + ) |
| 86 | + design_matrix.append( |
| 87 | + [ |
| 88 | + 0, |
| 89 | + -dx0 / dhd0, |
| 90 | + -dy0 / dhd0 |
| 91 | + ] |
| 92 | + ) |
| 93 | + observation_vector.extend( |
| 94 | + [ |
| 95 | + float(hz0.relative_to(hz_o)), |
| 96 | + dhd0 - math.sin(v) * d |
| 97 | + ] |
| 98 | + ) |
| 99 | + |
| 100 | + return design_matrix, observation_vector |
| 101 | + |
| 102 | + |
| 103 | +def _matrices_resection_vertical( |
| 104 | + measurements: list[tuple[Angle, Angle, float]], |
| 105 | + targets: list[Coordinate], |
| 106 | + station: Coordinate |
| 107 | +) -> tuple[list[list[float]], list[float]]: |
| 108 | + design_matrix: list[list[float]] = [] |
| 109 | + observation_vector: list[float] = [] |
| 110 | + |
| 111 | + for (_, v, d), coord in zip(measurements, targets): |
| 112 | + dr0 = coord - station |
| 113 | + |
| 114 | + design_matrix.append( |
| 115 | + [ |
| 116 | + -1 |
| 117 | + ] |
| 118 | + ) |
| 119 | + observation_vector.extend( |
| 120 | + [ |
| 121 | + dr0.z - d * math.cos(v) |
| 122 | + ] |
| 123 | + ) |
| 124 | + |
| 125 | + return design_matrix, observation_vector |
| 126 | + |
| 127 | + |
| 128 | +def _weights_resection_horizontal( |
| 129 | + measurements: list[tuple[Angle, Angle, float]], |
| 130 | + targets: list[Coordinate], |
| 131 | + *, |
| 132 | + accuracy_hz: float = 1, |
| 133 | + accuracy_v: float = 1, |
| 134 | + accuracy_d: tuple[float, float] = (1, 1.5) |
| 135 | +) -> np.ndarray: |
| 136 | + weights: list[float] = [] |
| 137 | + |
| 138 | + accuracy_sd, accuracy_sd_ppm = accuracy_d |
| 139 | + for _, v, sd in measurements: |
| 140 | + weights.extend( |
| 141 | + ( |
| 142 | + 1 / accuracy_hz**2, |
| 143 | + 1 / ( |
| 144 | + ( |
| 145 | + ( |
| 146 | + accuracy_sd |
| 147 | + + accuracy_sd_ppm * sd / 1000 |
| 148 | + ) * math.sin(v) |
| 149 | + )**2 |
| 150 | + + ( |
| 151 | + sd * math.cos(v) * accuracy_v |
| 152 | + )**2 |
| 153 | + ) |
| 154 | + ) |
| 155 | + ) |
| 156 | + |
| 157 | + return np.diag(weights) |
| 158 | + |
| 159 | + |
| 160 | +def _weights_resection_vertical( |
| 161 | + measurements: list[tuple[Angle, Angle, float]], |
| 162 | + targets: list[Coordinate], |
| 163 | + *, |
| 164 | + accuracy_v: float = 1 |
| 165 | +) -> np.ndarray: |
| 166 | + weights: list[float] = [] |
| 167 | + |
| 168 | + accuracy_v_rad = math.radians(accuracy_v / 3600) |
| 169 | + for _, v, sd in measurements: |
| 170 | + hd = math.sin(v) * sd |
| 171 | + if hd < 30: |
| 172 | + hd = 30 |
| 173 | + weights.append( |
| 174 | + 1 / ( |
| 175 | + (hd * 5e-5)**2 |
| 176 | + + ( |
| 177 | + hd * accuracy_v_rad |
| 178 | + )**2 |
| 179 | + ) |
| 180 | + ) |
| 181 | + |
| 182 | + return np.diag(weights) |
| 183 | + |
| 184 | + |
| 185 | +def _iter_resection_horizontal( |
| 186 | + measurements: list[tuple[Angle, Angle, float]], |
| 187 | + targets: list[Coordinate], |
| 188 | + station: Coordinate, |
| 189 | + orientation: Angle, |
| 190 | + weights: np.ndarray, |
| 191 | +) -> tuple[np.ndarray, np.ndarray]: |
| 192 | + design_float, obs_float = _matrices_resection_horizontal( |
| 193 | + measurements, |
| 194 | + targets, |
| 195 | + station, |
| 196 | + orientation |
| 197 | + ) |
| 198 | + |
| 199 | + design = np.array(design_float) |
| 200 | + obs = np.array(obs_float) |
| 201 | + |
| 202 | + norm = design.T @ weights @ design |
| 203 | + norminv = np.linalg.pinv(norm) |
| 204 | + |
| 205 | + x = -norminv @ design.T @ weights @ obs |
| 206 | + |
| 207 | + v = design @ x - obs |
| 208 | + m0 = np.sqrt(v.T @ weights @ v / (len(measurements) * 2 - 3)) |
| 209 | + m = m0 * np.sqrt(np.diag(norminv)) |
| 210 | + |
| 211 | + return x, m |
| 212 | + |
| 213 | + |
| 214 | +def _iter_resection_vertical( |
| 215 | + measurements: list[tuple[Angle, Angle, float]], |
| 216 | + targets: list[Coordinate], |
| 217 | + station: Coordinate, |
| 218 | + weights: np.ndarray |
| 219 | +) -> tuple[np.ndarray, np.ndarray]: |
| 220 | + design_float, obs_float = _matrices_resection_vertical( |
| 221 | + measurements, |
| 222 | + targets, |
| 223 | + station |
| 224 | + ) |
| 225 | + |
| 226 | + design = np.array(design_float) |
| 227 | + obs = np.array(obs_float) |
| 228 | + |
| 229 | + norm = design.T @ weights @ design |
| 230 | + norminv = np.linalg.pinv(norm) |
| 231 | + |
| 232 | + x = -norminv @ design.T @ weights @ obs |
| 233 | + |
| 234 | + v = design @ x - obs |
| 235 | + m0 = np.sqrt(v.T @ weights @ v / (len(measurements) - 1)) |
| 236 | + m = m0 * np.sqrt(np.diag(norminv)) |
| 237 | + |
| 238 | + return x, m |
| 239 | + |
| 240 | + |
| 241 | +def resection_horizontal( |
| 242 | + measurements: list[tuple[Angle, Angle, float]], |
| 243 | + targets: list[Coordinate], |
| 244 | + preliminary_station: Coordinate, |
| 245 | + *, |
| 246 | + x_tolerance: float = 5e-4, |
| 247 | + y_tolerance: float = 5e-4, |
| 248 | + orientation_tolerance: Angle = Angle(1 / 3600, "deg"), |
| 249 | + max_iterations: int = 20, |
| 250 | + uniform_weights: bool = False, |
| 251 | + accuracy_hz: float = 1, |
| 252 | + accuracy_v: float = 1, |
| 253 | + accuracy_d: tuple[float, float] = (1, 1.5) |
| 254 | +) -> tuple[bool, Angle, Angle, Coordinate, Coordinate]: |
| 255 | + if len(measurements) != len(targets) or len(targets) < 2: |
| 256 | + raise ValueError("Cannot calculate resection with less than 2 targets") |
| 257 | + |
| 258 | + station = preliminary_station |
| 259 | + delta_st0, _, _ = (targets[0] - station).to_polar() |
| 260 | + orientation = (delta_st0 - measurements[0][0]).normalized() |
| 261 | + |
| 262 | + o_tolerance = float(orientation_tolerance) |
| 263 | + |
| 264 | + if uniform_weights: |
| 265 | + weights = np.eye(len(measurements) * 2) |
| 266 | + else: |
| 267 | + weights = _weights_resection_horizontal( |
| 268 | + measurements, |
| 269 | + targets, |
| 270 | + accuracy_hz=accuracy_hz, |
| 271 | + accuracy_v=accuracy_v, |
| 272 | + accuracy_d=accuracy_d |
| 273 | + ) |
| 274 | + |
| 275 | + stdev_orientation = Angle(0) |
| 276 | + stdev_station = Coordinate(0, 0, 0) |
| 277 | + corr_o = corr_x = corr_y = np.inf |
| 278 | + iterations = 0 |
| 279 | + while ( |
| 280 | + abs(corr_o) > o_tolerance |
| 281 | + or abs(corr_x) > x_tolerance |
| 282 | + or abs(corr_y) > y_tolerance |
| 283 | + ): |
| 284 | + if iterations >= max_iterations: |
| 285 | + return ( |
| 286 | + False, orientation, stdev_orientation, station, stdev_station |
| 287 | + ) |
| 288 | + |
| 289 | + x, m = _iter_resection_horizontal( |
| 290 | + measurements, |
| 291 | + targets, |
| 292 | + station, |
| 293 | + orientation, |
| 294 | + weights |
| 295 | + ) |
| 296 | + |
| 297 | + corr_o, corr_x, corr_y = x |
| 298 | + |
| 299 | + orientation = (orientation + Angle(corr_o)).normalized() |
| 300 | + station = station + Coordinate(corr_x, corr_y, 0) |
| 301 | + # seemingly should be deg, but not sure |
| 302 | + stdev_orientation = Angle(m[0]) |
| 303 | + stdev_station = Coordinate(m[1], m[2], 0) |
| 304 | + |
| 305 | + iterations += 1 |
| 306 | + |
| 307 | + return True, orientation, stdev_orientation, station, stdev_station |
| 308 | + |
| 309 | + |
| 310 | +def resection_vertical( |
| 311 | + measurements: list[tuple[Angle, Angle, float]], |
| 312 | + targets: list[Coordinate], |
| 313 | + preliminary_station: Coordinate, |
| 314 | + *, |
| 315 | + uniform_weights: bool = False, |
| 316 | + accuracy_v: float = 1 |
| 317 | +) -> tuple[Coordinate, Coordinate]: |
| 318 | + if uniform_weights: |
| 319 | + weights = np.eye(len(measurements)) |
| 320 | + else: |
| 321 | + weights = _weights_resection_vertical( |
| 322 | + measurements, |
| 323 | + targets, |
| 324 | + accuracy_v=accuracy_v |
| 325 | + ) |
| 326 | + |
| 327 | + x, m = _iter_resection_vertical( |
| 328 | + measurements, |
| 329 | + targets, |
| 330 | + preliminary_station, |
| 331 | + weights |
| 332 | + ) |
| 333 | + |
| 334 | + return preliminary_station + Coordinate(0, 0, x[0]), Coordinate(0, 0, m[0]) |
| 335 | + |
| 336 | + |
| 337 | +def resection_2d_1d( |
| 338 | + measurements: list[tuple[Angle, Angle, float]], |
| 339 | + targets: list[Coordinate], |
| 340 | + preliminary_station: Coordinate, |
| 341 | + *, |
| 342 | + x_tolerance: float = 5e-4, |
| 343 | + y_tolerance: float = 5e-4, |
| 344 | + orientation_tolerance: Angle = Angle(1 / 3600, "deg"), |
| 345 | + max_iterations: int = 20, |
| 346 | + uniform_weights: bool = False, |
| 347 | + accuracy_hz: float = 1, |
| 348 | + accuracy_v: float = 1, |
| 349 | + accuracy_d: tuple[float, float] = (1, 1.5) |
| 350 | +) -> tuple[bool, Angle, Angle, Coordinate, Coordinate]: |
| 351 | + ( |
| 352 | + converged, |
| 353 | + orientation, |
| 354 | + stdev_orientation, |
| 355 | + station, |
| 356 | + stdev_station_hz |
| 357 | + ) = resection_horizontal( |
| 358 | + measurements, |
| 359 | + targets, |
| 360 | + preliminary_station, |
| 361 | + x_tolerance=x_tolerance, |
| 362 | + y_tolerance=y_tolerance, |
| 363 | + orientation_tolerance=orientation_tolerance, |
| 364 | + max_iterations=max_iterations, |
| 365 | + accuracy_hz=accuracy_hz, |
| 366 | + accuracy_v=accuracy_v, |
| 367 | + accuracy_d=accuracy_d, |
| 368 | + uniform_weights=uniform_weights |
| 369 | + ) |
| 370 | + |
| 371 | + station, stdev_station_v = resection_vertical( |
| 372 | + measurements, |
| 373 | + targets, |
| 374 | + station, |
| 375 | + uniform_weights=uniform_weights, |
| 376 | + accuracy_v=accuracy_v |
| 377 | + ) |
| 378 | + |
| 379 | + return ( |
| 380 | + converged, |
| 381 | + orientation, |
| 382 | + stdev_orientation, |
| 383 | + station, |
| 384 | + stdev_station_hz + stdev_station_v |
| 385 | + ) |
0 commit comments