-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_helper.py
220 lines (179 loc) · 7.53 KB
/
data_helper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
import os
import numpy as np
import pandas as pd
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision
from PIL import Image
from helper import convert_map_to_lane_map, convert_map_to_road_map
NUM_SAMPLE_PER_SCENE = 126
NUM_IMAGE_PER_SAMPLE = 6
image_names = [
"CAM_FRONT_LEFT.jpeg",
"CAM_FRONT.jpeg",
"CAM_FRONT_RIGHT.jpeg",
"CAM_BACK_LEFT.jpeg",
"CAM_BACK.jpeg",
"CAM_BACK_RIGHT.jpeg",
]
# The dataset class for unlabeled data.
class UnlabeledDataset(torch.utils.data.Dataset):
def __init__(self, image_folder, scene_index, first_dim, transform):
"""
Args:
image_folder (string): the location of the image folder
scene_index (list): a list of scene indices for the unlabeled data
first_dim ({'sample', 'image'}):
'sample' will return [batch_size, NUM_IMAGE_PER_SAMPLE, 3, H, W]
'image' will return [batch_size, 3, H, W] and the index of the camera [0 - 5]
CAM_FRONT_LEFT: 0
CAM_FRONT: 1
CAM_FRONT_RIGHT: 2
CAM_BACK_LEFT: 3
CAM_BACK.jpeg: 4
CAM_BACK_RIGHT: 5
transform (Transform): The function to process the image
"""
self.image_folder = image_folder
self.scene_index = scene_index
self.transform = transform
assert first_dim in ["sample", "image"]
self.first_dim = first_dim
def __len__(self):
if self.first_dim == "sample":
return self.scene_index.size * NUM_SAMPLE_PER_SCENE
elif self.first_dim == "image":
return self.scene_index.size * NUM_SAMPLE_PER_SCENE * NUM_IMAGE_PER_SAMPLE
def __getitem__(self, index):
if self.first_dim == "sample":
scene_id = self.scene_index[index // NUM_SAMPLE_PER_SCENE]
sample_id = index % NUM_SAMPLE_PER_SCENE
sample_path = os.path.join(
self.image_folder, f"scene_{scene_id}", f"sample_{sample_id}"
)
images = []
for image_name in image_names:
image_path = os.path.join(sample_path, image_name)
image = Image.open(image_path)
images.append(self.transform(image))
image_tensor = torch.stack(images)
return image_tensor
elif self.first_dim == "image":
scene_id = self.scene_index[
index // (NUM_SAMPLE_PER_SCENE * NUM_IMAGE_PER_SAMPLE)
]
sample_id = (
index % (NUM_SAMPLE_PER_SCENE * NUM_IMAGE_PER_SAMPLE)
) // NUM_IMAGE_PER_SAMPLE
image_name = image_names[index % NUM_IMAGE_PER_SAMPLE]
image_path = os.path.join(
self.image_folder,
f"scene_{scene_id}",
f"sample_{sample_id}",
image_name,
)
image = Image.open(image_path)
return self.transform(image), index % NUM_IMAGE_PER_SAMPLE
# The dataset class for labeled data.
class LabeledDataset(torch.utils.data.Dataset):
def __init__(
self, image_folder, annotation_file, scene_index, transform, extra_info=True
):
"""
Args:
image_folder (string): the location of the image folder
annotation_file (string): the location of the annotations
scene_index (list): a list of scene indices for the unlabeled data
transform (Transform): The function to process the image
extra_info (Boolean): whether you want the extra information
"""
self.image_folder = image_folder
self.annotation_dataframe = pd.read_csv(annotation_file)
self.scene_index = scene_index
self.transform = transform
self.extra_info = extra_info
def __len__(self):
return self.scene_index.size * NUM_SAMPLE_PER_SCENE
def __getitem__(self, index):
scene_id = self.scene_index[index // NUM_SAMPLE_PER_SCENE]
sample_id = index % NUM_SAMPLE_PER_SCENE
sample_path = os.path.join(
self.image_folder, f"scene_{scene_id}", f"sample_{sample_id}"
)
images = []
for image_name in image_names:
image_path = os.path.join(sample_path, image_name)
image = Image.open(image_path)
images.append(self.transform(image))
image_tensor = torch.stack(images)
data_entries = self.annotation_dataframe[
(self.annotation_dataframe["scene"] == scene_id)
& (self.annotation_dataframe["sample"] == sample_id)
]
corners = data_entries[
["fl_x", "fr_x", "bl_x", "br_x", "fl_y", "fr_y", "bl_y", "br_y"]
].to_numpy()
categories = data_entries.category_id.to_numpy()
ego_path = os.path.join(sample_path, "ego.png")
ego_image = Image.open(ego_path)
ego_image = torchvision.transforms.functional.to_tensor(ego_image)
road_image = convert_map_to_road_map(ego_image)
target = {}
target["bounding_box"] = torch.as_tensor(corners).view(-1, 2, 4)
target["category"] = torch.as_tensor(categories)
if self.extra_info:
actions = data_entries.action_id.to_numpy()
# You can change the binary_lane to False to get a lane with
lane_image = convert_map_to_lane_map(ego_image, binary_lane=True)
extra = {}
extra["action"] = torch.as_tensor(actions)
extra["ego_image"] = ego_image
extra["lane_image"] = lane_image
return image_tensor, target, road_image, extra
else:
return image_tensor, target, road_image
# -------------------------------------------------------------- #
# The dataset class for unlabeled data for denoising autoencoder #
# -------------------------------------------------------------- #
class CorruptedUnlabeledDataset(torch.utils.data.Dataset):
def __init__(self, image_folder, scene_index, transform, noise=None):
"""
Args:
image_folder (string): the location of the image folder
scene_index (list): a list of scene indices for the unlabeled data
transform (Transform): The function to process the image
"""
self.image_folder = image_folder
self.scene_index = scene_index
self.transform = transform
self.noise = noise
self.first_dim = "image"
def __len__(self):
return self.scene_index.size * NUM_SAMPLE_PER_SCENE * NUM_IMAGE_PER_SAMPLE
def __getitem__(self, index):
scene_id = self.scene_index[
index // (NUM_SAMPLE_PER_SCENE * NUM_IMAGE_PER_SAMPLE)
]
sample_id = (
index % (NUM_SAMPLE_PER_SCENE * NUM_IMAGE_PER_SAMPLE)
) // NUM_IMAGE_PER_SAMPLE
image_name = image_names[index % NUM_IMAGE_PER_SAMPLE]
image_path = os.path.join(
self.image_folder, f"scene_{scene_id}", f"sample_{sample_id}", image_name,
)
image = Image.open(image_path)
target_ = self.transform(image)
if self.noise is not None:
input_ = self.noise(target_)
else:
input_ = target_.clone()
return input_, target_
class AddGaussianNoise(object):
def __init__(self, mean=0.0, std=1.0):
self.std = std
self.mean = mean
def __call__(self, tensor):
return tensor + torch.randn(tensor.size()) * self.std + self.mean
def __repr__(self):
return self.__class__.__name__ + f"(mean={self.mean}, std={self.std})"