-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathroad_map_construction.py
241 lines (201 loc) · 7.76 KB
/
road_map_construction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
import os
import random
from argparse import ArgumentParser
import numpy as np
import pytorch_lightning as pl
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision
from pytorch_lightning import Trainer
from pytorch_lightning.loggers import TensorBoardLogger
from data_helper import LabeledDataset
from denoising_autoencoder import DenoisingAutoencoder
from helper import collate_fn
from unet import UNet
from utils import LOSS, compute_ts_road_map
random.seed(0)
np.random.seed(0)
torch.manual_seed(0)
FEATURE_EXTRACTOR_PATH = "./saved_models/denoising_autoencoder.ckpt"
IMAGE_FOLDER = "../data"
ANNOTATION_CSV = "../data/annotation.csv"
class RoadMapNetwork(pl.LightningModule):
"""Module for construction the binary road image
Parameters
----------
hparams : argparse.Namespace
A namespace containing the required hyperparameters. In particular, the
code expects `hparams` to have the following keys:
1. NUM_LAYERS
2. FEATURES_START
3. DROPOUT
4. BATCH_SIZE
5. LEARNING_RATE
6. L2_PENALTY
7. EPOCHS
8. LOSS
"""
def __init__(self, hparams):
super(RoadMapNetwork, self).__init__()
self.hparams = hparams
dropout = False if self.hparams.DROPOUT == 0 else self.hparams.DROPOUT
self.apply_sigmoid = True
if self.hparams.LOSS in ["bce", "weighted_bce"]:
self.apply_sigmoid = False
self.loss_fn = LOSS[self.hparams.LOSS]
self.feature_extractor = DenoisingAutoencoder.load_from_checkpoint(
FEATURE_EXTRACTOR_PATH
) # Output size -> (None, 192, 13, 13)
self.feature_extractor.freeze()
self.classifier = UNet(
num_layers=self.hparams.NUM_LAYERS,
features_start=self.hparams.FEATURES_START,
dropout=dropout,
)
def forward(self, x):
stacked = self._stack_features(x)
stacked = self.classifier(stacked)
stacked = F.interpolate(stacked, size=800, mode="bilinear", align_corners=False)
stacked = torch.squeeze(stacked, 1)
if self.apply_sigmoid:
stacked = torch.sigmoid(stacked)
return stacked # Output size -> (None, 800, 800)
def _stack_features(self, x):
temp = []
for idx in range(6):
features = self.feature_extractor(x[:, idx, :, :, :])
temp.append(features)
return torch.cat(temp, 1)
def training_step(self, batch, batch_idx):
sample, _, road_image = batch
sample = torch.stack(sample)
road_image = torch.stack(road_image).float()
predicted_road_image = self.forward(sample)
if self.hparams.LOSS == "dice_loss":
predicted_road_image = predicted_road_image.unsqueeze(1)
loss = self.loss_fn(predicted_road_image, road_image)
logs = {"loss": loss}
return {"loss": loss, "log": logs}
def validation_step(self, batch, batch_idx):
sample, _, road_image = batch
sample = torch.stack(sample)
road_image = torch.stack(road_image).float()
predicted_road_image = self.forward(sample)
loss = self.loss_fn(predicted_road_image, road_image)
medians = (
(
predicted_road_image.contiguous()
.view(predicted_road_image.size(0), -1)
.median(-1)[0]
)
.unsqueeze(1)
.unsqueeze(1)
) # Hacky way to get median of each image in the batch in the right shape
predicted_road_image = predicted_road_image > medians
ts = compute_ts_road_map(predicted_road_image, road_image)
return {"val_loss": loss, "threat_score": ts}
def validation_epoch_end(self, outputs):
val_loss_mean = torch.stack([x["val_loss"] for x in outputs]).mean()
threat_score_mean = torch.stack([x["threat_score"] for x in outputs]).mean()
logs = {"val_loss": val_loss_mean, "threat_score": threat_score_mean}
return {"val_loss": val_loss_mean, "log": logs}
def configure_optimizers(self):
optimizer = torch.optim.SGD(
self.parameters(),
lr=self.hparams.LEARNING_RATE,
weight_decay=self.hparams.L2_PENALTY,
momentum=0.9,
)
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, factor=0.5)
return [optimizer], [scheduler]
def prepare_data(self):
# The scenes from 106 - 133 are labeled
labeled_scene_index = np.arange(106, 134)
# Actually used during training and validation
# Keeping aside last 8 scenes for validation
# self._train_labeled_scene_index = labeled_scene_index[:-8]
# self._valid_labeled_scene_index = labeled_scene_index[-8:]
# Modification for submission (training on entire data)
# Not removing the validation scenes to avoid changing other parts of
# the code. Though validation here does not make sense.
self._train_labeled_scene_index = labeled_scene_index[:]
self._valid_labeled_scene_index = labeled_scene_index[-14:]
self._static_transform = torchvision.transforms.Compose(
[
torchvision.transforms.Resize((224, 224)),
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize(
(0.54, 0.60, 0.63), (0.34, 0.34, 0.34)
),
]
)
self.labeled_trainset = LabeledDataset(
image_folder=IMAGE_FOLDER,
annotation_file=ANNOTATION_CSV,
scene_index=self._train_labeled_scene_index,
transform=self._static_transform,
extra_info=False,
)
self.labeled_validset = LabeledDataset(
image_folder=IMAGE_FOLDER,
annotation_file=ANNOTATION_CSV,
scene_index=self._valid_labeled_scene_index,
transform=self._static_transform,
extra_info=False,
)
def train_dataloader(self):
return torch.utils.data.DataLoader(
self.labeled_trainset,
batch_size=self.hparams.BATCH_SIZE,
shuffle=True,
num_workers=4,
collate_fn=collate_fn,
)
def val_dataloader(self):
return torch.utils.data.DataLoader(
self.labeled_validset,
batch_size=self.hparams.BATCH_SIZE,
shuffle=False,
num_workers=4,
collate_fn=collate_fn,
)
def main(args):
logger = TensorBoardLogger(
save_dir=os.getcwd(),
version=None, # To prevent from using the slurm job id
name="lightning_logs_road_map",
)
model = RoadMapNetwork(hparams=args)
trainer = Trainer(gpus=1, max_epochs=args.EPOCHS, logger=logger)
trainer.fit(model)
trainer.save_checkpoint(f"saved_models/road_map_{args.VERSION}.ckpt")
if __name__ == "__main__":
parser = ArgumentParser()
# parametrize the network
parser.add_argument("--NUM_LAYERS", type=int, default=3)
parser.add_argument("--FEATURES_START", type=int, default=128)
parser.add_argument("--DROPOUT", type=float, default=0.4)
parser.add_argument("--BATCH_SIZE", type=int, default=32)
parser.add_argument("--EPOCHS", type=int, default=50)
parser.add_argument(
"--LOSS",
type=str,
default="dice_loss",
choices=[
"bce",
"weighted_bce",
"mse",
"mae",
"bce+mse",
"dice_loss",
"psnr_mse",
"psnr_mae",
],
)
parser.add_argument("--LEARNING_RATE", type=float, default=0.1)
parser.add_argument("--L2_PENALTY", type=float, default=5e-4)
parser.add_argument("--VERSION", type=int, default=0)
args = parser.parse_args()
# train
main(args)