Skip to content

Commit a09e945

Browse files
committed
More minor vignette corrections
1 parent d2ecffc commit a09e945

File tree

2 files changed

+3
-3
lines changed

2 files changed

+3
-3
lines changed

vignettes/Interoperable_Pipelines.Rmd

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -231,7 +231,7 @@ opWithFilter %>>% getOutputById(2)
231231

232232
Finally, we show a case, where sequential filtering steps are performed in Spark, before visualizing in R, and running a decision tree model in Python.
233233

234-
Note, that in this case, we register `getTargetForPyClassifcation` and `getTargetForPyClassification` as *non-data* functions. In this particular pipeline, there is no main *path* as such, as the pipeline branches into 2 paths - one in R and the other in Python. In such cases, using `outAsIn` or the `dataFunction` parameter with formula semantics is just a **question of convenience**. If the first argument of a *non-data* function is of a data frame class in R, Python (Pandas) or Spark, the package automatically performs type conversions when environments are switched (R -> Spark, Spark -> Python, and so on).
234+
Note, that in this case, `getTargetForPyClassifcation` and `getTargetForPyClassification` have been registered as *data* functions. Type conversions between R, Spark and Python for data functions are performed automatically by the package.
235235

236236
```{r}
237237
pipelineObj %>>% filterData_spark(condition = "Species == 'setosa' or Species == 'virginica'") %>>%

vignettes/Streaming_pipelines_for_working_Apache_Spark_Structured_Streaming.Rmd

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -95,7 +95,7 @@ Users can define their own functions and use it as a part of the pipeline. These
9595

9696
```{r}
9797
98-
# Function to convert datatype json struct to colums
98+
# Function to convert datatype json struct to columns
9999
convertStructToDf <- function(streamObj) {
100100
streamObj <- SparkR::select(streamObj,list(getField(streamObj$`jsontostructs(value)`,"bannerId"),
101101
getField(streamObj$`jsontostructs(value)`,"mobile"),
@@ -131,7 +131,7 @@ castDfColumns <- function(streamObj) {
131131
return (streamObj)
132132
}
133133
134-
# Function to convert datatype json struct to colums
134+
# Function to convert datatype json struct to columns
135135
convertDfToKafkaKeyValuePairs <- function (streamObj, kafkaKey) {
136136
streamObj <- SparkR::toJSON(streamObj)
137137
streamObj$key <- kafkaKey

0 commit comments

Comments
 (0)