|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "code", |
| 5 | + "execution_count": 15, |
| 6 | + "id": "c77c88b8-2a44-4cbb-92db-7e4af858bc75", |
| 7 | + "metadata": {}, |
| 8 | + "outputs": [], |
| 9 | + "source": [ |
| 10 | + "import mne\n", |
| 11 | + "import pandas as pd\n", |
| 12 | + "import matplotlib.pyplot as plt\n", |
| 13 | + "import numpy as np\n", |
| 14 | + "from glob import glob\n", |
| 15 | + "import scipy.io\n", |
| 16 | + "import h5py\n", |
| 17 | + "import os\n", |
| 18 | + "from tqdm import tqdm" |
| 19 | + ] |
| 20 | + }, |
| 21 | + { |
| 22 | + "cell_type": "markdown", |
| 23 | + "id": "7429d1aa-cd96-4d79-af58-27dc4e85eaf0", |
| 24 | + "metadata": {}, |
| 25 | + "source": [ |
| 26 | + "## Concatenate TF" |
| 27 | + ] |
| 28 | + }, |
| 29 | + { |
| 30 | + "cell_type": "code", |
| 31 | + "execution_count": 147, |
| 32 | + "id": "70aab6cb-cf53-456b-acd0-4a67c2fb71fa", |
| 33 | + "metadata": {}, |
| 34 | + "outputs": [ |
| 35 | + { |
| 36 | + "data": { |
| 37 | + "text/plain": [ |
| 38 | + "132" |
| 39 | + ] |
| 40 | + }, |
| 41 | + "execution_count": 147, |
| 42 | + "metadata": {}, |
| 43 | + "output_type": "execute_result" |
| 44 | + } |
| 45 | + ], |
| 46 | + "source": [ |
| 47 | + "csv_path = f\"derivatives/behavior/\"\n", |
| 48 | + "output_path = f\"derivatives/preprocessed/TF_arrays/\"\n", |
| 49 | + "\n", |
| 50 | + "# take IDs from fully processed behavioral data (checked for accuracy, validRT, missed responses) separately for each condition\n", |
| 51 | + "sub_nonsoc = list(pd.read_csv(glob(f\"{csv_path}thrive_data_nonsoc.csv\")[0])[\"sub\"])\n", |
| 52 | + "sub_soc = list(pd.read_csv(glob(f\"{csv_path}thrive_data_soc.csv\")[0])[\"sub\"])\n", |
| 53 | + "\n", |
| 54 | + "# tf_files = sorted(glob(f\"{data_path}/sub-*{condition}*.mat\"))\n", |
| 55 | + "for measure in [\n", |
| 56 | + " \"TF\",\n", |
| 57 | + " \"ITPS\",\n", |
| 58 | + " \"ICPS\",\n", |
| 59 | + " \"wPLI\"\n", |
| 60 | + "]:\n", |
| 61 | + " if measure == \"ITPS\" or measure == \"ICPS\":\n", |
| 62 | + " key_idx = 1\n", |
| 63 | + " else:\n", |
| 64 | + " key_idx = -1\n", |
| 65 | + " data_path = f\"derivatives/preprocessed/TF_outputs/main/resp/{measure}/\"\n", |
| 66 | + " for condition in tqdm([\"resp_ns_c_1\", \"resp_ns_i_0\", \"resp_ns_i_1\",\n", |
| 67 | + " \"resp_s_i_1\", \"resp_s_c_1\", \"resp_s_i_0\"]):\n", |
| 68 | + " if condition.split(\"_\")[1] == \"s\":\n", |
| 69 | + " valid_sub_list = sub_soc.copy()\n", |
| 70 | + " elif condition.split(\"_\")[1] == \"ns\":\n", |
| 71 | + " valid_sub_list = sub_nonsoc.copy()\n", |
| 72 | + " \n", |
| 73 | + " arr_list = []\n", |
| 74 | + " subjects_with_data = [] \n", |
| 75 | + " for sub_id in valid_sub_list:\n", |
| 76 | + " try:\n", |
| 77 | + " tf_files = sorted(glob(f\"{data_path}/sub-{sub_id}*{measure}*{condition}*.mat\"))\n", |
| 78 | + " # if len(tf_files) == 0:\n", |
| 79 | + " # print(f\"{sub_id} not in TF\")\n", |
| 80 | + " data_file = h5py.File(tf_files[0])\n", |
| 81 | + " key_list = list(data_file.keys())\n", |
| 82 | + " data = data_file[key_list[key_idx]]\n", |
| 83 | + " assert data.shape == (64, 375, 59), \"Check your data!\"\n", |
| 84 | + " arr_list.append(data)\n", |
| 85 | + " subjects_with_data.append(sub_id)\n", |
| 86 | + " except: continue\n", |
| 87 | + " \n", |
| 88 | + " full_data = np.stack(arr_list, axis=0)\n", |
| 89 | + " assert full_data.shape[0] == len(subjects_with_data), \"Check your data!\"\n", |
| 90 | + " len(arr_list)\n", |
| 91 | + " scipy.io.savemat(f\"{output_path}/{measure}_{condition}.mat\",\n", |
| 92 | + " {\n", |
| 93 | + " f\"{measure}_{condition}\": full_data,\n", |
| 94 | + " f\"subjects\": subjects_with_data,\n", |
| 95 | + " })" |
| 96 | + ] |
| 97 | + }, |
| 98 | + { |
| 99 | + "cell_type": "markdown", |
| 100 | + "id": "ddfa7622-4174-4289-9185-e1500d1b5e4b", |
| 101 | + "metadata": {}, |
| 102 | + "source": [ |
| 103 | + "## Inspect number of events" |
| 104 | + ] |
| 105 | + }, |
| 106 | + { |
| 107 | + "cell_type": "code", |
| 108 | + "execution_count": null, |
| 109 | + "id": "546b567f-71fd-4d39-b9ed-b5fe5d794584", |
| 110 | + "metadata": {}, |
| 111 | + "outputs": [], |
| 112 | + "source": [ |
| 113 | + "import time\n", |
| 114 | + "sub_to_inspect = \"192\"\n", |
| 115 | + "trial_data = dict({\n", |
| 116 | + " \"sub\": [],\n", |
| 117 | + " \"s_resp_incon_error\": [],\n", |
| 118 | + " \"s_resp_incon_corr\": [],\n", |
| 119 | + " \"ns_resp_incon_error\": [],\n", |
| 120 | + " \"ns_resp_incon_corr\": [],\n", |
| 121 | + " \"s_stim_incon_corr\": [],\n", |
| 122 | + " \"s_stim_con_corr\": [],\n", |
| 123 | + " \"ns_stim_incon_corr\": [],\n", |
| 124 | + " \"ns_stim_con_corr\": [],\n", |
| 125 | + "})\n", |
| 126 | + "\n", |
| 127 | + "dataset_path = \"/home/data/NDClab/datasets/thrive-dataset/\"\n", |
| 128 | + "\n", |
| 129 | + "sub_ids = sorted([i.split(\"/\")[-1] for i in glob(\n", |
| 130 | + " f\"{dataset_path}derivatives/preprocessed/sub-*{sub_to_inspect}*\")])\n", |
| 131 | + "\n", |
| 132 | + "list_of_eeg_file = sorted(\n", |
| 133 | + " glob(\n", |
| 134 | + " f\"{dataset_path}derivatives/preprocessed/*{sub_to_inspect}*/s1_r1/eeg/*all_eeg_processed_data*.set\")\n", |
| 135 | + ")\n", |
| 136 | + "\n", |
| 137 | + "start = time.time()\n", |
| 138 | + "\n", |
| 139 | + "for file_idx, filename in enumerate(list_of_eeg_file):\n", |
| 140 | + " sub_id = sub_ids[file_idx].split(\"-\")[-1]\n", |
| 141 | + " trial_data[\"sub\"].append(sub_id)\n", |
| 142 | + " EEG = scipy.io.loadmat(filename, squeeze_me=True, struct_as_record=False)[\"EEG\"]\n", |
| 143 | + " EEG_mne = mne.io.read_epochs_eeglab(filename, verbose = 'ERROR',)\n", |
| 144 | + " \n", |
| 145 | + " events = EEG.event\n", |
| 146 | + " n_times = EEG.pnts\n", |
| 147 | + " sr = EEG.srate\n", |
| 148 | + " num_ch = EEG.nbchan\n", |
| 149 | + "\n", |
| 150 | + " drop_idx = []\n", |
| 151 | + " for i in range(len(events)):\n", |
| 152 | + " latency = eeg_point2lat(\n", |
| 153 | + " [events[i].latency],\n", |
| 154 | + " [events[i].epoch],\n", |
| 155 | + " sr,\n", |
| 156 | + " timewin = [EEG.xmin*1000, EEG.xmax*1000],\n", |
| 157 | + " timeunit = 1e-3,\n", |
| 158 | + " )\n", |
| 159 | + " if latency >= -.1 and latency <= .1:\n", |
| 160 | + " drop_idx.append(i)\n", |
| 161 | + " \n", |
| 162 | + " events = [ev for ev in events if list(events).index(ev) in drop_idx]\n", |
| 163 | + " print(f\"sub-{sub_id}: {len(events)} good events were found!\")\n", |
| 164 | + " \n", |
| 165 | + " trial_data[\"s_resp_incon_error\"].append(len(\n", |
| 166 | + " [ev for ev in events if\\\n", |
| 167 | + " (ev.observation == \"s\") & (ev.eventType == \"resp\") & (ev.congruency == \"i\")\\\n", |
| 168 | + " & (ev.accuracy == 0) & (ev.responded == 1) & (ev.validRt == 1) & (ev.extraResponse == 0)\n", |
| 169 | + " ]\n", |
| 170 | + " ))\n", |
| 171 | + " \n", |
| 172 | + " trial_data[\"s_resp_incon_corr\"].append(len(\n", |
| 173 | + " [ev for ev in events if\\\n", |
| 174 | + " (ev.observation == \"s\") & (ev.eventType == \"resp\") & (ev.congruency == \"i\")\\\n", |
| 175 | + " & (ev.accuracy == 1) & (ev.responded == 1) & (ev.validRt == 1) & (ev.extraResponse == 0)\n", |
| 176 | + " ]\n", |
| 177 | + " ))\n", |
| 178 | + " \n", |
| 179 | + " trial_data[\"ns_resp_incon_error\"].append(len(\n", |
| 180 | + " [ev for ev in events if\\\n", |
| 181 | + " (ev.observation == \"ns\") & (ev.eventType == \"resp\") & (ev.congruency == \"i\")\\\n", |
| 182 | + " & (ev.accuracy == 0) & (ev.responded == 1) & (ev.validRt == 1) & (ev.extraResponse == 0)\n", |
| 183 | + " ]\n", |
| 184 | + " ))\n", |
| 185 | + " \n", |
| 186 | + " trial_data[\"ns_resp_incon_corr\"].append(len(\n", |
| 187 | + " [ev for ev in events if\\\n", |
| 188 | + " (ev.observation == \"ns\") & (ev.eventType == \"resp\") & (ev.congruency == \"i\")\\\n", |
| 189 | + " & (ev.accuracy == 1) & (ev.responded == 1) & (ev.validRt == 1) & (ev.extraResponse == 0)\n", |
| 190 | + " ]\n", |
| 191 | + " ))\n", |
| 192 | + " \n", |
| 193 | + " trial_data[\"s_stim_incon_corr\"].append(len(\n", |
| 194 | + " [ev for ev in events if\\\n", |
| 195 | + " (ev.observation == \"s\") & (ev.eventType == \"stim\") & (ev.congruency == \"i\")\\\n", |
| 196 | + " & (ev.accuracy == 1) & (ev.responded == 1) & (ev.validRt == 1) & (ev.extraResponse == 0)\n", |
| 197 | + " ]\n", |
| 198 | + " ))\n", |
| 199 | + " \n", |
| 200 | + " trial_data[\"s_stim_con_corr\"].append(len(\n", |
| 201 | + " [ev for ev in events if\\\n", |
| 202 | + " (ev.observation == \"s\") & (ev.eventType == \"stim\") & (ev.congruency == \"c\")\\\n", |
| 203 | + " & (ev.accuracy == 1) & (ev.responded == 1) & (ev.validRt == 1) & (ev.extraResponse == 0)\n", |
| 204 | + " ]\n", |
| 205 | + " ))\n", |
| 206 | + " \n", |
| 207 | + " trial_data[\"ns_stim_incon_corr\"].append(len(\n", |
| 208 | + " [ev for ev in events if\\\n", |
| 209 | + " (ev.observation == \"ns\") & (ev.eventType == \"stim\") & (ev.congruency == \"i\")\\\n", |
| 210 | + " & (ev.accuracy == 1) & (ev.responded == 1) & (ev.validRt == 1) & (ev.extraResponse == 0)\n", |
| 211 | + " ]\n", |
| 212 | + " ))\n", |
| 213 | + " \n", |
| 214 | + " trial_data[\"ns_stim_con_corr\"].append(len(\n", |
| 215 | + " [ev for ev in events if\\\n", |
| 216 | + " (ev.observation == \"ns\") & (ev.eventType == \"stim\") & (ev.congruency == \"c\")\\\n", |
| 217 | + " & (ev.accuracy == 1) & (ev.responded == 1) & (ev.validRt == 1) & (ev.extraResponse == 0)\n", |
| 218 | + " ]\n", |
| 219 | + " ))\n", |
| 220 | + "\n", |
| 221 | + "end = time.time()\n", |
| 222 | + "print(f\"Executed time {np.round(end - start, 2)} s\")\n", |
| 223 | + "\n", |
| 224 | + "pd.DataFrame(trial_data)" |
| 225 | + ] |
| 226 | + } |
| 227 | + ], |
| 228 | + "metadata": { |
| 229 | + "kernelspec": { |
| 230 | + "display_name": "Python 3 (ipykernel)", |
| 231 | + "language": "python", |
| 232 | + "name": "python3" |
| 233 | + }, |
| 234 | + "language_info": { |
| 235 | + "codemirror_mode": { |
| 236 | + "name": "ipython", |
| 237 | + "version": 3 |
| 238 | + }, |
| 239 | + "file_extension": ".py", |
| 240 | + "mimetype": "text/x-python", |
| 241 | + "name": "python", |
| 242 | + "nbconvert_exporter": "python", |
| 243 | + "pygments_lexer": "ipython3", |
| 244 | + "version": "3.12.5" |
| 245 | + } |
| 246 | + }, |
| 247 | + "nbformat": 4, |
| 248 | + "nbformat_minor": 5 |
| 249 | +} |
0 commit comments