@@ -221,19 +221,20 @@ def convert_to_list_resp(series):
221221 processing_log ["rt_incon" + prefix ].append (np .round (condition_data [(condition_data ["congruent" ] == 0 ) & (condition_data ["accuracy" ] == 1 )]["rt" ].mean () * 1000 , 3 ))
222222 processing_log ["rt_corr" + prefix ].append (np .round (condition_data [(condition_data ["congruent" ] == 0 ) & (condition_data ["accuracy" ] == 1 )]["rt" ].mean () * 1000 , 3 ))
223223 processing_log ["rt_err" + prefix ].append (np .round (condition_data [(condition_data ["congruent" ] == 0 ) & (condition_data ["accuracy" ] == 0 )]["rt" ].mean () * 1000 , 3 ))
224+ condition_data = condition_data [(condition_data ["pre_valid_rt" ] == 1 ) & (condition_data ["pre_extra_resp" ] == 0 )]
224225 processing_log ["pes" + prefix ].append (np .round (
225226 np .log (
226227 condition_data [(condition_data ["accuracy" ] == 1 ) & (condition_data ["pre_accuracy" ] == 0 ) & \
227- (condition_data ["pre_congruent" ] == 0 )]. rt
228+ (condition_data ["pre_congruent" ] == 0 )][ "rt" ]
228229 ).mean ()\
229230 - np .log (
230231 condition_data [(condition_data ["accuracy" ] == 1 ) & (condition_data ["pre_accuracy" ] == 1 ) & \
231- (condition_data ["pre_congruent" ] == 0 )]. rt
232+ (condition_data ["pre_congruent" ] == 0 )][ "rt" ]
232233 ).mean (), 5
233234 ))
234235 processing_log ["pea" + prefix ].append (np .round (
235- condition_data [(condition_data ["pre_accuracy" ] == 0 ) & (condition_data ["pre_congruent" ] == 0 )]. accuracy .mean ()\
236- - condition_data [(condition_data ["pre_accuracy" ] == 1 ) & (condition_data ["pre_congruent" ] == 0 )]. accuracy .mean (), 5
236+ condition_data [(condition_data ["pre_accuracy" ] == 0 ) & (condition_data ["pre_congruent" ] == 0 )][ " accuracy" ] .mean ()\
237+ - condition_data [(condition_data ["pre_accuracy" ] == 1 ) & (condition_data ["pre_congruent" ] == 0 )][ " accuracy" ] .mean (), 5
237238 ))
238239
239240 processing_log ["peri_acc" + prefix ].append (np .round (
@@ -255,21 +256,21 @@ def convert_to_list_resp(series):
255256 (
256257 np .log (
257258 condition_data [(condition_data ["pre_accuracy" ] == 0 ) & (condition_data ["congruent" ] == 0 ) & \
258- (condition_data ["pre_congruent" ] == 0 )]["rt" ]
259+ (condition_data ["pre_congruent" ] == 0 ) & ( condition_data [ "accuracy" ] == 1 ) ]["rt" ]
259260 ).mean ()\
260261 - np .log (
261262 condition_data [(condition_data ["pre_accuracy" ] == 0 ) & (condition_data ["congruent" ] == 1 ) & \
262- (condition_data ["pre_congruent" ] == 0 )]["rt" ]
263+ (condition_data ["pre_congruent" ] == 0 ) & ( condition_data [ "accuracy" ] == 1 ) ]["rt" ]
263264 ).mean ()
264265 )\
265266 - (
266267 np .log (
267268 condition_data [(condition_data ["pre_accuracy" ] == 1 ) & (condition_data ["congruent" ] == 0 ) & \
268- (condition_data ["pre_congruent" ] == 0 )]["rt" ]
269+ (condition_data ["pre_congruent" ] == 0 ) & ( condition_data [ "accuracy" ] == 1 ) ]["rt" ]
269270 ).mean ()\
270271 - np .log (
271272 condition_data [(condition_data ["pre_accuracy" ] == 1 ) & (condition_data ["congruent" ] == 1 ) & \
272- (condition_data ["pre_congruent" ] == 0 )]["rt" ]
273+ (condition_data ["pre_congruent" ] == 0 ) & ( condition_data [ "accuracy" ] == 1 ) ]["rt" ]
273274 ).mean ()
274275 ), 5
275276 ))
@@ -283,7 +284,7 @@ def convert_to_list_resp(series):
283284for df in [i for i in os .listdir (f"{ output_dataset_path } { output_path } " ) if "sub-" in i ]:
284285 list_of_ind_csv .append (pd .read_csv (f"{ output_dataset_path } { output_path } { df } " ))
285286full_df = pd .concat (list_of_ind_csv )
286- full_df = full_df [(full_df ["pre_accuracy" ] == 1 ) | (full_df ["pre_accuracy" ] == 0 )]
287+ # full_df = full_df[(full_df["pre_accuracy"] == 1) | (full_df["pre_accuracy"] == 0)]
287288full_df .to_csv (f"{ output_dataset_path } { output_path } full_df.csv" , index = False )
288289
289290end = time .time ()
0 commit comments