|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "id": "c30cb9b0-405b-48ce-a744-3f811f120a87", |
| 6 | + "metadata": {}, |
| 7 | + "source": [ |
| 8 | + "## Implement Caching of Text and Visual Embeddings\n", |
| 9 | + "\n", |
| 10 | + "In this notebook, we establish a method to cache embeddings. By implementing a persistent cache, we don't need to perform costly calculations over and over again for the same pdfs and slides. We can save a lot of time by storing them, once they were calculated and just fetch the desired outcome if we need it again.\n", |
| 11 | + "\n", |
| 12 | + "- caching_local: Calculates embeddings (text and visual) if they are not calculated yet. Results are then stored in a local file using python's shelve module.\n", |
| 13 | + "- caching_hf: Also calculates embeddings (text and visual) if they are not calculated yet. Results are then stored in a Caching file on Huggingface.\n", |
| 14 | + "\n" |
| 15 | + ] |
| 16 | + }, |
| 17 | + { |
| 18 | + "cell_type": "code", |
| 19 | + "execution_count": 1, |
| 20 | + "id": "93cae03f-4adf-47c6-af18-cdf18b674f3c", |
| 21 | + "metadata": {}, |
| 22 | + "outputs": [], |
| 23 | + "source": [ |
| 24 | + "from caching import caching_hf, caching_local" |
| 25 | + ] |
| 26 | + }, |
| 27 | + { |
| 28 | + "cell_type": "markdown", |
| 29 | + "id": "e1713e3c-68c9-44c2-9925-43ce79d75e80", |
| 30 | + "metadata": {}, |
| 31 | + "source": [ |
| 32 | + "### 1. Caching the results on the local disc" |
| 33 | + ] |
| 34 | + }, |
| 35 | + { |
| 36 | + "cell_type": "code", |
| 37 | + "execution_count": 2, |
| 38 | + "id": "f16dde9b-6c37-427e-9a4b-c7c0da28c44a", |
| 39 | + "metadata": {}, |
| 40 | + "outputs": [ |
| 41 | + { |
| 42 | + "name": "stdout", |
| 43 | + "output_type": "stream", |
| 44 | + "text": [ |
| 45 | + "Caching slide 1\n", |
| 46 | + "Caching slide 2\n", |
| 47 | + "Caching slide 3\n", |
| 48 | + "Caching slide 4\n", |
| 49 | + "Caching slide 5\n", |
| 50 | + "Caching slide 6\n", |
| 51 | + "Caching slide 7\n", |
| 52 | + "Caching slide 8\n", |
| 53 | + "Caching slide 9\n", |
| 54 | + "It took 3.67 seconds to calculate the embeddings.\n" |
| 55 | + ] |
| 56 | + } |
| 57 | + ], |
| 58 | + "source": [ |
| 59 | + "import time\n", |
| 60 | + "pdf_path = \"WhatIsOMERO.pdf\" # Path to your PDF\n", |
| 61 | + "\n", |
| 62 | + "start_time = time.time()\n", |
| 63 | + "\n", |
| 64 | + "caching_local(pdf_path)\n", |
| 65 | + "\n", |
| 66 | + "end_time= time.time()\n", |
| 67 | + "duration= end_time - start_time\n", |
| 68 | + "print(f'It took {duration:.2f} seconds to calculate the embeddings.')" |
| 69 | + ] |
| 70 | + }, |
| 71 | + { |
| 72 | + "cell_type": "markdown", |
| 73 | + "id": "9f891dd1-7d08-4dc6-a824-7ecb80064d6e", |
| 74 | + "metadata": {}, |
| 75 | + "source": [ |
| 76 | + "When performing the same task again, the Embeddings are already stored in the Cache and the calculation should be much faster:" |
| 77 | + ] |
| 78 | + }, |
| 79 | + { |
| 80 | + "cell_type": "code", |
| 81 | + "execution_count": 3, |
| 82 | + "id": "c47466dd-71ae-4cdb-b83a-6ea488f26b07", |
| 83 | + "metadata": {}, |
| 84 | + "outputs": [ |
| 85 | + { |
| 86 | + "name": "stdout", |
| 87 | + "output_type": "stream", |
| 88 | + "text": [ |
| 89 | + "Fetching from cache: Slide 1\n", |
| 90 | + "Fetching from cache: Slide 2\n", |
| 91 | + "Fetching from cache: Slide 3\n", |
| 92 | + "Fetching from cache: Slide 4\n", |
| 93 | + "Fetching from cache: Slide 5\n", |
| 94 | + "Fetching from cache: Slide 6\n", |
| 95 | + "Fetching from cache: Slide 7\n", |
| 96 | + "Fetching from cache: Slide 8\n", |
| 97 | + "Fetching from cache: Slide 9\n", |
| 98 | + "It took 0.01 seconds to fetch the embeddings from the cache.\n" |
| 99 | + ] |
| 100 | + } |
| 101 | + ], |
| 102 | + "source": [ |
| 103 | + "start_time = time.time()\n", |
| 104 | + "\n", |
| 105 | + "caching_local(pdf_path)\n", |
| 106 | + "\n", |
| 107 | + "end_time= time.time()\n", |
| 108 | + "duration= end_time - start_time\n", |
| 109 | + "print(f'It took {duration:.2f} seconds to fetch the embeddings from the cache.')" |
| 110 | + ] |
| 111 | + }, |
| 112 | + { |
| 113 | + "cell_type": "markdown", |
| 114 | + "id": "020bd6b5-b62c-4aa3-b597-172ba9128305", |
| 115 | + "metadata": {}, |
| 116 | + "source": [ |
| 117 | + "### 2. Caching the results online via Huggingface\n", |
| 118 | + "\n", |
| 119 | + "You need to install the Huggingface Hub Package first and create an Account on [Huggingface](https://huggingface.co/). You also have to create a [Huggingface Token](https://huggingface.co/docs/hub/security-tokens) and set this as a environment variable. To get more information on how to do that, check out the [ReadMe](https://github.com/NFDI4BIOIMAGE/SlideInsight/blob/main/README.md).\n", |
| 120 | + "In this example the Data is stored in my Repository on Huggingface." |
| 121 | + ] |
| 122 | + }, |
| 123 | + { |
| 124 | + "cell_type": "code", |
| 125 | + "execution_count": 4, |
| 126 | + "id": "50c38072-c190-41e1-93a3-0618844848c3", |
| 127 | + "metadata": {}, |
| 128 | + "outputs": [ |
| 129 | + { |
| 130 | + "name": "stdout", |
| 131 | + "output_type": "stream", |
| 132 | + "text": [ |
| 133 | + "Repository 'lea-33/SlightInsight_Cache2' created.\n", |
| 134 | + "Caching Slide 1\n", |
| 135 | + "Caching Slide 2\n", |
| 136 | + "Caching Slide 3\n", |
| 137 | + "Caching Slide 4\n", |
| 138 | + "Caching Slide 5\n", |
| 139 | + "Caching Slide 6\n", |
| 140 | + "Caching Slide 7\n", |
| 141 | + "Caching Slide 8\n", |
| 142 | + "Caching Slide 9\n" |
| 143 | + ] |
| 144 | + }, |
| 145 | + { |
| 146 | + "data": { |
| 147 | + "application/vnd.jupyter.widget-view+json": { |
| 148 | + "model_id": "ca45505e21374216a03b11131b576a67", |
| 149 | + "version_major": 2, |
| 150 | + "version_minor": 0 |
| 151 | + }, |
| 152 | + "text/plain": [ |
| 153 | + "Uploading the dataset shards: 0%| | 0/1 [00:00<?, ?it/s]" |
| 154 | + ] |
| 155 | + }, |
| 156 | + "metadata": {}, |
| 157 | + "output_type": "display_data" |
| 158 | + }, |
| 159 | + { |
| 160 | + "data": { |
| 161 | + "application/vnd.jupyter.widget-view+json": { |
| 162 | + "model_id": "5fa9955410274ea7a5f4ae59ea2d0ca9", |
| 163 | + "version_major": 2, |
| 164 | + "version_minor": 0 |
| 165 | + }, |
| 166 | + "text/plain": [ |
| 167 | + "Creating parquet from Arrow format: 0%| | 0/1 [00:00<?, ?ba/s]" |
| 168 | + ] |
| 169 | + }, |
| 170 | + "metadata": {}, |
| 171 | + "output_type": "display_data" |
| 172 | + }, |
| 173 | + { |
| 174 | + "name": "stdout", |
| 175 | + "output_type": "stream", |
| 176 | + "text": [ |
| 177 | + "Finished caching WhatIsOMERO.pdf\n", |
| 178 | + "It took 7.91 seconds to calculate the embeddings.\n" |
| 179 | + ] |
| 180 | + } |
| 181 | + ], |
| 182 | + "source": [ |
| 183 | + "repo_name = \"lea-33/SlightInsight_Cache2\" # Change this to your Hugging Face repository name\n", |
| 184 | + "\n", |
| 185 | + "start_time = time.time()\n", |
| 186 | + "\n", |
| 187 | + "caching_hf(pdf_path, repo_name)\n", |
| 188 | + "\n", |
| 189 | + "end_time= time.time()\n", |
| 190 | + "duration= end_time - start_time\n", |
| 191 | + "print(f'It took {duration:.2f} seconds to calculate the embeddings.')" |
| 192 | + ] |
| 193 | + }, |
| 194 | + { |
| 195 | + "cell_type": "markdown", |
| 196 | + "id": "6c3c5eae-1ed7-44e0-9c46-777bfc70292c", |
| 197 | + "metadata": {}, |
| 198 | + "source": [ |
| 199 | + "Again, re-calculating the Embeddings should be faster, because they can now be fetched directly from the storage on Huggingface." |
| 200 | + ] |
| 201 | + }, |
| 202 | + { |
| 203 | + "cell_type": "code", |
| 204 | + "execution_count": 5, |
| 205 | + "id": "d4f7a6f4-2dba-4912-a8fa-1fd86f7a329d", |
| 206 | + "metadata": {}, |
| 207 | + "outputs": [ |
| 208 | + { |
| 209 | + "name": "stdout", |
| 210 | + "output_type": "stream", |
| 211 | + "text": [ |
| 212 | + "Repository 'lea-33/SlightInsight_Cache2' already exists.\n" |
| 213 | + ] |
| 214 | + }, |
| 215 | + { |
| 216 | + "data": { |
| 217 | + "application/vnd.jupyter.widget-view+json": { |
| 218 | + "model_id": "45ed41f991444173bcfbc1237bdffede", |
| 219 | + "version_major": 2, |
| 220 | + "version_minor": 0 |
| 221 | + }, |
| 222 | + "text/plain": [ |
| 223 | + "Generating train split: 0%| | 0/9 [00:00<?, ? examples/s]" |
| 224 | + ] |
| 225 | + }, |
| 226 | + "metadata": {}, |
| 227 | + "output_type": "display_data" |
| 228 | + }, |
| 229 | + { |
| 230 | + "name": "stdout", |
| 231 | + "output_type": "stream", |
| 232 | + "text": [ |
| 233 | + "Fetching from cache: Slide 1\n", |
| 234 | + "Fetching from cache: Slide 2\n", |
| 235 | + "Fetching from cache: Slide 3\n", |
| 236 | + "Fetching from cache: Slide 4\n", |
| 237 | + "Fetching from cache: Slide 5\n", |
| 238 | + "Fetching from cache: Slide 6\n", |
| 239 | + "Fetching from cache: Slide 7\n", |
| 240 | + "Fetching from cache: Slide 8\n", |
| 241 | + "Fetching from cache: Slide 9\n" |
| 242 | + ] |
| 243 | + }, |
| 244 | + { |
| 245 | + "data": { |
| 246 | + "application/vnd.jupyter.widget-view+json": { |
| 247 | + "model_id": "e5888786c8c4473db71983d77133e77b", |
| 248 | + "version_major": 2, |
| 249 | + "version_minor": 0 |
| 250 | + }, |
| 251 | + "text/plain": [ |
| 252 | + "Uploading the dataset shards: 0%| | 0/1 [00:00<?, ?it/s]" |
| 253 | + ] |
| 254 | + }, |
| 255 | + "metadata": {}, |
| 256 | + "output_type": "display_data" |
| 257 | + }, |
| 258 | + { |
| 259 | + "data": { |
| 260 | + "application/vnd.jupyter.widget-view+json": { |
| 261 | + "model_id": "acf4a0ba48d54fb8b29462f800499a3d", |
| 262 | + "version_major": 2, |
| 263 | + "version_minor": 0 |
| 264 | + }, |
| 265 | + "text/plain": [ |
| 266 | + "Creating parquet from Arrow format: 0%| | 0/1 [00:00<?, ?ba/s]" |
| 267 | + ] |
| 268 | + }, |
| 269 | + "metadata": {}, |
| 270 | + "output_type": "display_data" |
| 271 | + }, |
| 272 | + { |
| 273 | + "name": "stderr", |
| 274 | + "output_type": "stream", |
| 275 | + "text": [ |
| 276 | + "No files have been modified since last commit. Skipping to prevent empty commit.\n" |
| 277 | + ] |
| 278 | + }, |
| 279 | + { |
| 280 | + "name": "stdout", |
| 281 | + "output_type": "stream", |
| 282 | + "text": [ |
| 283 | + "Finished caching WhatIsOMERO.pdf\n", |
| 284 | + "It took 3.77 seconds to fetch the embeddings from the cache.\n" |
| 285 | + ] |
| 286 | + } |
| 287 | + ], |
| 288 | + "source": [ |
| 289 | + "start_time = time.time()\n", |
| 290 | + "\n", |
| 291 | + "caching_hf(pdf_path, repo_name)\n", |
| 292 | + "\n", |
| 293 | + "end_time= time.time()\n", |
| 294 | + "duration= end_time - start_time\n", |
| 295 | + "print(f'It took {duration:.2f} seconds to fetch the embeddings from the cache.')" |
| 296 | + ] |
| 297 | + }, |
| 298 | + { |
| 299 | + "cell_type": "markdown", |
| 300 | + "id": "2bb5574a-5fe6-49b0-9cb4-f0e307ef8955", |
| 301 | + "metadata": {}, |
| 302 | + "source": [ |
| 303 | + "### 3. Load the Dataset from Cache and convert it to a pandas DataFrame for easy processing" |
| 304 | + ] |
| 305 | + }, |
| 306 | + { |
| 307 | + "cell_type": "code", |
| 308 | + "execution_count": 6, |
| 309 | + "id": "cd042750-3954-42bf-af31-96d94a9607f6", |
| 310 | + "metadata": {}, |
| 311 | + "outputs": [ |
| 312 | + { |
| 313 | + "name": "stdout", |
| 314 | + "output_type": "stream", |
| 315 | + "text": [ |
| 316 | + "Dataset Preview:\n", |
| 317 | + " key value\n", |
| 318 | + "0 WhatIsOMERO.pdf_slide1 {'text_embedding': [0.4003332853317261, -0.336...\n", |
| 319 | + "1 WhatIsOMERO.pdf_slide2 {'text_embedding': [0.39082658290863037, -0.28...\n", |
| 320 | + "2 WhatIsOMERO.pdf_slide3 {'text_embedding': [0.18631458282470703, -0.37...\n", |
| 321 | + "3 WhatIsOMERO.pdf_slide4 {'text_embedding': [0.18063969910144806, -0.60...\n", |
| 322 | + "4 WhatIsOMERO.pdf_slide5 {'text_embedding': [-0.44303596019744873, -0.5...\n", |
| 323 | + "\n", |
| 324 | + "First Text Embedding:\n", |
| 325 | + "[0.4003332853317261, -0.33649125695228577, 0.3998110592365265, -0.4730990529060364, -0.5025672316551208, 0.12307340651750565, -0.24336643517017365, -0.3277848958969116, 0.29507237672805786, 0.5909251570701599] ...\n", |
| 326 | + "\n", |
| 327 | + "First Vision Embedding:\n", |
| 328 | + "[-0.037381067872047424, 0.4586034417152405, 0.020449191331863403, 0.13002845644950867, 0.3475934863090515, -0.14490166306495667, -0.16358992457389832, 0.13041885197162628, -0.04649023711681366, 0.08413688838481903] ...\n" |
| 329 | + ] |
| 330 | + } |
| 331 | + ], |
| 332 | + "source": [ |
| 333 | + "from datasets import load_dataset\n", |
| 334 | + "import pandas as pd\n", |
| 335 | + "\n", |
| 336 | + "# Load the dataset\n", |
| 337 | + "def load_and_display_cache(repo_name):\n", |
| 338 | + " # Load the dataset from Hugging Face\n", |
| 339 | + " cache_dataset = load_dataset(repo_name, split=\"train\")\n", |
| 340 | + " \n", |
| 341 | + " # Convert to pandas DataFrame for better visualization\n", |
| 342 | + " df = pd.DataFrame(cache_dataset)\n", |
| 343 | + "\n", |
| 344 | + " # Display a preview of the dataset\n", |
| 345 | + " print(\"Dataset Preview:\")\n", |
| 346 | + " print(df.head())\n", |
| 347 | + " \n", |
| 348 | + " # Example: Display restored image from the first record\n", |
| 349 | + " first_record = cache_dataset[0]\n", |
| 350 | + " \n", |
| 351 | + " print(\"\\nFirst Text Embedding:\")\n", |
| 352 | + " print(first_record[\"value\"][\"text_embedding\"][:10], \"...\") \n", |
| 353 | + " \n", |
| 354 | + " print(\"\\nFirst Vision Embedding:\")\n", |
| 355 | + " print(first_record[\"value\"][\"vision_embedding\"][:10], \"...\")\n", |
| 356 | + "\n", |
| 357 | + "\n", |
| 358 | + "load_and_display_cache(\"lea-33/SlightInsight_Cache2\")\n" |
| 359 | + ] |
| 360 | + } |
| 361 | + ], |
| 362 | + "metadata": { |
| 363 | + "kernelspec": { |
| 364 | + "display_name": "Python 3 (ipykernel)", |
| 365 | + "language": "python", |
| 366 | + "name": "python3" |
| 367 | + }, |
| 368 | + "language_info": { |
| 369 | + "codemirror_mode": { |
| 370 | + "name": "ipython", |
| 371 | + "version": 3 |
| 372 | + }, |
| 373 | + "file_extension": ".py", |
| 374 | + "mimetype": "text/x-python", |
| 375 | + "name": "python", |
| 376 | + "nbconvert_exporter": "python", |
| 377 | + "pygments_lexer": "ipython3", |
| 378 | + "version": "3.10.12" |
| 379 | + } |
| 380 | + }, |
| 381 | + "nbformat": 4, |
| 382 | + "nbformat_minor": 5 |
| 383 | +} |
0 commit comments