1
+ seed_everything : true
2
+
3
+ trainer :
4
+ accelerator : " gpu"
5
+ devices : -1
6
+ strategy :
7
+ class_path : lightning.pytorch.strategies.DDPStrategy
8
+ init_args :
9
+ find_unused_parameters : false
10
+ gradient_as_bucket_view : true
11
+ static_graph : true
12
+ gradient_clip_val : 1.0
13
+ precision : " 16-mixed"
14
+ sync_batchnorm : true
15
+ logger :
16
+ class_path : lightning.pytorch.loggers.mlflow.MLFlowLogger
17
+ init_args :
18
+ save_dir : /home/valhassa/Projects/geo-deep-learning/logs
19
+ log_model : all
20
+ experiment_name : " gdl_experiment"
21
+ run_name : " gdl_run"
22
+ callbacks :
23
+ - class_path : lightning.pytorch.callbacks.EarlyStopping
24
+ init_args :
25
+ monitor : " val_loss"
26
+ mode : " min"
27
+ verbose : False
28
+ patience : 20
29
+ - class_path : lightning.pytorch.callbacks.ModelCheckpoint
30
+ init_args :
31
+ monitor : " val_loss"
32
+ mode : " min"
33
+ save_top_k : 1
34
+ filename : " model-{epoch:02d}-{val_loss:.3f}"
35
+ - class_path : tools.callbacks.segmentation_visualization.VisualizationCallback
36
+ init_args :
37
+ max_samples : 3
38
+ mean : ${data.init_args.mean}
39
+ std : ${data.init_args.std}
40
+ data_type_max : ${data.init_args.data_type_max}
41
+ num_classes : ${model.init_args.num_classes}
42
+ class_colors : ${model.init_args.class_colors}
43
+ max_epochs : 10
44
+
45
+ model :
46
+ class_path : tasks_with_models.segmentation_segformer.SegmentationSegformer
47
+ init_args :
48
+ encoder : " mit_b0" # "mit_b0", "mit_b1", "mit_b2", "mit_b3", "mit_b4", "mit_b5"
49
+ in_channels : 3
50
+ weights : imagenet
51
+ max_samples : 6
52
+ num_classes : 5
53
+ mean : ${data.init_args.mean}
54
+ std : ${data.init_args.std}
55
+ data_type_max : ${data.init_args.data_type_max}
56
+ loss :
57
+ class_path : segmentation_models_pytorch.losses.DiceLoss
58
+ init_args :
59
+ mode : " multiclass"
60
+ class_labels : ["background", "fore", "hydro", "roads", "buildings"]
61
+ class_colors : ["#000000", "#008000", "#0000FF", "#FFFF00", "#FF0000"]
62
+ weights_from_checkpoint_path : null
63
+
64
+ optimizer :
65
+ class_path : AdamW
66
+ init_args :
67
+ lr : 6e-5
68
+
69
+ lr_scheduler :
70
+ class_path : ReduceLROnPlateau
71
+ init_args :
72
+ monitor : " val_loss"
73
+ mode : " min"
74
+ factor : 0.1
75
+ patience : 10
76
+ cooldown : 1
77
+ min_lr : 6e-8
78
+
79
+ data :
80
+ class_path : datamodules.imagery_NonGeoDataModule.BlueSkyNonGeoDataModule
81
+ init_args :
82
+ batch_size : 4
83
+ num_workers : 8
84
+ data_type_max : 255
85
+ patch_size :
86
+ - 512
87
+ - 512
88
+ mean :
89
+ - 0.3992
90
+ - 0.4283
91
+ - 0.3998
92
+ std :
93
+ - 0.1672
94
+ - 0.1800
95
+ - 0.1584
96
+ csv_root_folder : /export/sata01/wspace/test_dir/multi/all_rgb_data/patches/4cls_RGB
97
+ patches_root_folder : /export/sata01/wspace/test_dir/multi/all_rgb_data/patches/4cls_RGB
98
+
99
+ ckpt_path : null
0 commit comments