@@ -65,6 +65,14 @@ sink()
6565
6666# # Summarize results:
6767
68+ WMW <- function (x , y ){ # rl, nws
69+ wmw <- wilcox.test(x , y , paired = TRUE , alternative = " greater" , exact = FALSE )
70+ metrics <- as.vector(c(round(median(x - y , na.rm = TRUE ),3 ),
71+ wmw $ statistic , round(wmw $ p.value ,5 )))
72+ return (metrics )
73+ }
74+
75+
6876results <- matrix (0 , nrow = nrow(Best ), ncol = 2 )
6977results <- data.frame (results )
7078names(results )<- c(" County" , " Eval" )
@@ -77,15 +85,51 @@ for(i in 1:nrow(Best)){
7785 " _fips-" , Best $ County [i ], " _fips_" , Best $ County [i ], " .csv" )))
7886}
7987
88+ nws <- matrix (0 , nrow = nrow(Best ), ncol = 2 )
89+ nws <- data.frame (nws )
90+ names(nws )<- c(" County" , " Eval" )
91+
92+ for (i in 1 : nrow(Best )){
93+ nws [i ,]<- c(Best $ County [i ],
94+ avg_return(by_year = FALSE , filename = paste0(" Summer_results/ORL_NWS_eval_samp-R_obs-W_" , prefix ,
95+ " _fips_" , Best $ County [i ], " .csv" )))
96+ }
97+
98+ overall_2014.2016 <- WMW(results $ Eval , nws $ Eval )
99+
100+
101+ results <- matrix (0 , nrow = nrow(Best ), ncol = 2 )
102+ results <- data.frame (results )
103+ names(results )<- c(" County" , " Eval" )
104+
105+ for (i in 1 : nrow(Best )){
106+ results [i ,]<- c(Best $ County [i ],
107+ avg_return(by_year = FALSE , filename = paste0(" Summer_results/ORL_RL_eval_samp-R_obs-W_" , " December" , " _" ,
108+ " a2c" , " _F-" , " none" , " _Rstr-HI-" , Best $ OT [i ],
109+ " _arch-" , Best $ NHL [i ], " -" , Best $ NHU [i ], " _ns-" , Best $ n_steps [i ],
110+ " _fips-" , Best $ County [i ], " _fips_" , Best $ County [i ], " .csv" )))
111+ }
112+
113+ nws <- matrix (0 , nrow = nrow(Best ), ncol = 2 )
114+ nws <- data.frame (nws )
115+ names(nws )<- c(" County" , " Eval" )
80116
117+ for (i in 1 : nrow(Best )){
118+ nws [i ,]<- c(Best $ County [i ],
119+ avg_return(by_year = FALSE , filename = paste0(" Summer_results/ORL_NWS_eval_samp-R_obs-W_" , r_model ,
120+ " _fips_" , Best $ County [i ], " .csv" )))
121+ }
81122
123+ overall_original <- WMW(results $ Eval , nws $ Eval )
82124
83125# # First examine distribution of heat index across years
84126
85127data <- read_parquet(" data/processed/states.parquet" )
86128Year <- year(data $ Date )
87129
88130Data <- data.frame (Year , QHI = data $ quant_HI_county )
131+ QHI_medians <- aggregate(QHI ~ Year , Data , median )
132+
89133ggplot(Data , aes(x = as.factor(Year ), y = QHI , group = Year )) +
90134 geom_boxplot() +
91135 labs(x = " Year" , y = " Quantile of Heat Index" ) +
@@ -115,6 +159,54 @@ for(i in 1:nrow(Best)){
115159 " _fips_" , Best $ County [i ], " .csv" )))
116160}
117161
162+ wmw_2007 <- WMW(results [,2 ], nws [,2 ])
163+ wmw_2011 <- WMW(results [,3 ], nws [,3 ])
164+ wmw_2015 <- WMW(results [,4 ], nws [,4 ])
165+
166+ # # Across the later years:
167+ results <- matrix (0 , nrow = nrow(Best ), ncol = 4 )
168+ results <- data.frame (results )
169+ names(results )<- c(" County" , " 2014" , " 2015" , " 2016" )
170+
171+ for (i in 1 : nrow(Best )){
172+ results [i ,]<- c(Best $ County [i ],
173+ avg_return(by_year = TRUE , filename = paste0(" Summer_results/ORL_RL_eval_samp-R_obs-W_" , prefix , " _" ,
174+ " a2c" , " _F-" , " none" , " _Rstr-HI-" , Best $ OT [i ],
175+ " _arch-" , Best $ NHL [i ], " -" , Best $ NHU [i ], " _ns-" , Best $ n_steps [i ],
176+ " _fips-" , Best $ County [i ], " _fips_" , Best $ County [i ], " .csv" )))
177+ }
178+
179+ nws <- matrix (0 , nrow = nrow(Best ), ncol = 4 )
180+ nws <- data.frame (results )
181+ names(nws )<- c(" County" , " 2014" , " 2015" , " 2016" )
182+
183+ for (i in 1 : nrow(Best )){
184+ nws [i ,]<- c(Best $ County [i ],
185+ avg_return(by_year = TRUE , filename = paste0(" Summer_results/ORL_NWS_eval_samp-R_obs-W_" , prefix ,
186+ " _fips_" , Best $ County [i ], " .csv" )))
187+ }
188+
189+ wmw_2014 <- WMW(results [,2 ], nws [,2 ])
190+ wmw_2015_b <- WMW(results [,3 ], nws [,3 ])
191+ wmw_2016 <- WMW(results [,4 ], nws [,4 ])
192+
193+ # # Summarize in a table:
194+ DF <- data.frame (cbind(Model = c(" Original" , rep(" " , 3 ),
195+ " Sequential" , rep(" " , 3 )),
196+ Eval_year = c(" 2007,2011,2015" , " 2007" , " 2011" , " 2015" ,
197+ " 2014-2016" , " 2014" , " 2015" , " 2016" ),
198+ rbind(overall_original ,
199+ wmw_2007 , wmw_2011 , wmw_2015 ,
200+ overall_2014.2016 ,
201+ wmw_2014 , wmw_2015_b , wmw_2016
202+ )))
203+ row.names(DF )<- NULL
204+ DF $ QHI_median <- c(" " ,round(QHI_medians [c(2 ,6 ,10 ),2 ],3 ), " " , round(QHI_medians [9 : 11 ,2 ],3 ))
205+
206+ names(DF )<- c(" Model" , " Eval. Period" , " Median Diff." , " WMW stat" , " p-value" , " QHI Median" )
207+ DF <- DF [,c(" Model" , " Eval. Period" , " QHI Median" , " Median Diff." , " p-value" )]
208+ DF $ `p-value` <- round(as.numeric(DF $ `p-value` ), 3 )
209+ DF
118210
119211# # Reshape data to long format
120212results_long <- results [,2 : 4 ] %> %
0 commit comments