|
| 1 | +#!/usr/bin/env python3 |
| 2 | +""" |
| 3 | +Utility script that materializes a significantly smaller HuggingFace checkpoint |
| 4 | +from an existing model configuration. It is primarily intended to help bridge |
| 5 | +functional / quantization tests (e.g., the Qwen3 MoE conversion suites) avoid |
| 6 | +downloading extremely large public checkpoints. |
| 7 | +
|
| 8 | +Example: |
| 9 | + ```bash |
| 10 | + uv run python examples/conversion/create_hf_toy_model.py \ |
| 11 | + --hf-model-id Qwen/Qwen3-30B-A3B \ |
| 12 | + --output-dir /tmp/qwen3_toy \ |
| 13 | + --num-hidden-layers 2 \ |
| 14 | + --num-experts 4 |
| 15 | + ``` |
| 16 | +
|
| 17 | +The script works by: |
| 18 | +1. Loading the original configuration via `AutoConfig` so that all model-specific |
| 19 | + attributes (e.g., gating settings, rotary params) stay in sync with the |
| 20 | + upstream release. |
| 21 | +2. Overriding a handful of size-related knobs (hidden layers, number of experts, |
| 22 | + etc.) so that the instantiated model is tiny but structurally compatible. |
| 23 | +3. Saving the resulting random-weight checkpoint alongside a tokenizer so tests |
| 24 | + can treat it like any other HF model directory. |
| 25 | +""" |
| 26 | + |
| 27 | +from __future__ import annotations |
| 28 | + |
| 29 | +import argparse |
| 30 | +from pathlib import Path |
| 31 | +from typing import Optional |
| 32 | + |
| 33 | +import torch |
| 34 | +from transformers import ( |
| 35 | + AutoConfig, |
| 36 | + AutoModelForCausalLM, |
| 37 | + AutoTokenizer, |
| 38 | +) |
| 39 | + |
| 40 | + |
| 41 | +def _parse_args() -> argparse.Namespace: |
| 42 | + parser = argparse.ArgumentParser(description="Create a reduced HuggingFace Causal LM checkpoint for tests.") |
| 43 | + parser.add_argument( |
| 44 | + "--hf-model-id", |
| 45 | + default="Qwen/Qwen3-30B-A3B", |
| 46 | + help="Source HuggingFace model id to pull the base config from.", |
| 47 | + ) |
| 48 | + parser.add_argument( |
| 49 | + "--tokenizer-id", |
| 50 | + default=None, |
| 51 | + help="Optional tokenizer model id. Defaults to --hf-model-id.", |
| 52 | + ) |
| 53 | + parser.add_argument( |
| 54 | + "--output-dir", |
| 55 | + required=True, |
| 56 | + help="Directory where the toy checkpoint will be saved.", |
| 57 | + ) |
| 58 | + parser.add_argument( |
| 59 | + "--num-hidden-layers", |
| 60 | + type=int, |
| 61 | + default=2, |
| 62 | + help="Number of transformer layers to keep in the toy model.", |
| 63 | + ) |
| 64 | + parser.add_argument( |
| 65 | + "--num-experts", |
| 66 | + type=int, |
| 67 | + default=4, |
| 68 | + help="Total MoE experts per layer for the toy model.", |
| 69 | + ) |
| 70 | + parser.add_argument( |
| 71 | + "--num-experts-per-tok", |
| 72 | + type=int, |
| 73 | + default=None, |
| 74 | + help="Experts routed per token. Defaults to --num-experts.", |
| 75 | + ) |
| 76 | + parser.add_argument( |
| 77 | + "--moe-intermediate-size", |
| 78 | + type=int, |
| 79 | + default=None, |
| 80 | + help="Optional override for the MoE FFN size.", |
| 81 | + ) |
| 82 | + parser.add_argument( |
| 83 | + "--seed", |
| 84 | + type=int, |
| 85 | + default=1234, |
| 86 | + help="Torch seed applied before checkpoint creation.", |
| 87 | + ) |
| 88 | + parser.add_argument( |
| 89 | + "--disable-remote-code-trust", |
| 90 | + action="store_false", |
| 91 | + dest="trust_remote_code", |
| 92 | + help="Disable trust_remote_code when loading from HuggingFace.", |
| 93 | + ) |
| 94 | + parser.set_defaults(trust_remote_code=True) |
| 95 | + return parser.parse_args() |
| 96 | + |
| 97 | + |
| 98 | +def _adjust_config( |
| 99 | + config, |
| 100 | + *, |
| 101 | + num_hidden_layers: int, |
| 102 | + num_experts: int, |
| 103 | + num_experts_per_tok: Optional[int], |
| 104 | + moe_intermediate_size: Optional[int], |
| 105 | +) -> None: |
| 106 | + """Mutate the config in-place so it matches the requested toy topology.""" |
| 107 | + |
| 108 | + config.num_hidden_layers = num_hidden_layers |
| 109 | + |
| 110 | + if hasattr(config, "max_window_layers"): |
| 111 | + config.max_window_layers = min(config.max_window_layers, num_hidden_layers) |
| 112 | + |
| 113 | + if hasattr(config, "layer_types"): |
| 114 | + config.layer_types = config.layer_types[:num_hidden_layers] |
| 115 | + |
| 116 | + mlp_only_layers = getattr(config, "mlp_only_layers", []) |
| 117 | + if isinstance(mlp_only_layers, (list, tuple)): |
| 118 | + config.mlp_only_layers = [layer for layer in mlp_only_layers if layer < num_hidden_layers] |
| 119 | + |
| 120 | + config.num_experts = num_experts |
| 121 | + config.num_experts_per_tok = ( |
| 122 | + num_experts_per_tok |
| 123 | + if num_experts_per_tok is not None |
| 124 | + else min(num_experts, getattr(config, "num_experts_per_tok", num_experts)) |
| 125 | + ) |
| 126 | + |
| 127 | + if hasattr(config, "router_top_k"): |
| 128 | + config.router_top_k = min(config.num_experts, config.num_experts_per_tok) |
| 129 | + |
| 130 | + if moe_intermediate_size is not None: |
| 131 | + config.moe_intermediate_size = moe_intermediate_size |
| 132 | + |
| 133 | + |
| 134 | +def _save_tokenizer(output_dir: Path, tokenizer_id: str, *, trust_remote_code: bool) -> None: |
| 135 | + tokenizer = AutoTokenizer.from_pretrained(tokenizer_id, trust_remote_code=trust_remote_code) |
| 136 | + tokenizer.save_pretrained(output_dir) |
| 137 | + |
| 138 | + |
| 139 | +def main() -> None: |
| 140 | + """Main entry point.""" |
| 141 | + args = _parse_args() |
| 142 | + |
| 143 | + output_dir = Path(args.output_dir).expanduser().resolve() |
| 144 | + output_dir.mkdir(parents=True, exist_ok=True) |
| 145 | + |
| 146 | + tokenizer_id = args.tokenizer_id or args.hf_model_id |
| 147 | + trust_remote_code = bool(args.trust_remote_code) |
| 148 | + |
| 149 | + torch.manual_seed(args.seed) |
| 150 | + |
| 151 | + config = AutoConfig.from_pretrained( |
| 152 | + args.hf_model_id, |
| 153 | + trust_remote_code=trust_remote_code, |
| 154 | + ) |
| 155 | + config.torch_dtype = torch.bfloat16 |
| 156 | + |
| 157 | + _adjust_config( |
| 158 | + config, |
| 159 | + num_hidden_layers=args.num_hidden_layers, |
| 160 | + num_experts=args.num_experts, |
| 161 | + num_experts_per_tok=args.num_experts_per_tok, |
| 162 | + moe_intermediate_size=args.moe_intermediate_size, |
| 163 | + ) |
| 164 | + |
| 165 | + model = AutoModelForCausalLM.from_config(config, trust_remote_code=trust_remote_code) |
| 166 | + model = model.bfloat16() |
| 167 | + model.save_pretrained(output_dir, safe_serialization=True) |
| 168 | + |
| 169 | + _save_tokenizer(output_dir, tokenizer_id, trust_remote_code=trust_remote_code) |
| 170 | + |
| 171 | + print(f"Toy HuggingFace checkpoint saved to: {output_dir}") |
| 172 | + print(f" hidden_layers={args.num_hidden_layers}") |
| 173 | + print(f" num_experts={args.num_experts}") |
| 174 | + print(f" num_experts_per_tok={config.num_experts_per_tok}") |
| 175 | + print(f" tokenizer_source={tokenizer_id}") |
| 176 | + |
| 177 | + |
| 178 | +if __name__ == "__main__": |
| 179 | + main() |
0 commit comments