diff --git a/PyTorch/Classification/ConvNets/configs.yml b/PyTorch/Classification/ConvNets/configs.yml index 2780517a6..602372fc7 100644 --- a/PyTorch/Classification/ConvNets/configs.yml +++ b/PyTorch/Classification/ConvNets/configs.yml @@ -30,7 +30,10 @@ platform: workers: 10 prefetch: 4 gpu_affinity: socket_unique_contiguous - + DGXH100: + workers: 10 + prefetch: 4 + gpu_affinity: socket_unique_contiguous mode: benchmark_training: &benchmark_training print_freq: 1 @@ -168,6 +171,25 @@ models: FP32: <<: *resnet_params_2k batch_size: 128 + DGXH100: + AMP: + <<: *resnet_params_2k + arch: resnet50 + batch_size: 256 + memory_format: nhwc + TF32: + <<: *resnet_params_2k + arch: resnet50 + batch_size: 256 + T4: + AMP: + <<: *resnet_params_2k + arch: resnet50 + batch_size: 256 + memory_format: nhwc + FP32: + <<: *resnet_params_2k + batch_size: 128 # }}} resnext101-32x4d: # {{{ DGX1V: &RNXT_DGX1V @@ -204,6 +226,16 @@ models: <<: *resnet_params_1k arch: resnext101-32x4d batch_size: 64 + DGXH100: + AMP: + <<: *resnet_params_1k + arch: resnext101-32x4d + batch_size: 128 + memory_format: nhwc + TF32: + <<: *resnet_params_1k + arch: resnext101-32x4d + batch_size: 128 # }}} se-resnext101-32x4d: # {{{ DGX1V: &SERNXT_DGX1V @@ -230,6 +262,16 @@ models: <<: *resnet_params_1k arch: se-resnext101-32x4d batch_size: 128 + DGXH100: + AMP: + <<: *resnet_params_1k + arch: se-resnext101-32x4d + batch_size: 128 + memory_format: nhwc + TF32: + <<: *resnet_params_1k + arch: se-resnext101-32x4d + batch_size: 128 T4: AMP: <<: *resnet_params_1k @@ -282,6 +324,16 @@ models: <<: *efficientnet_b0_params_4k arch: efficientnet-widese-b0 batch_size: 256 + DGXH100: + AMP: + <<: *efficientnet_b0_params_4k + arch: efficientnet-widese-b0 + batch_size: 256 + memory_format: nhwc + TF32: + <<: *efficientnet_b0_params_4k + arch: efficientnet-widese-b0 + batch_size: 256 # }}} efficientnet-b0: # {{{ T4: @@ -324,6 +376,16 @@ models: <<: *efficientnet_b0_params_4k arch: efficientnet-b0 batch_size: 256 + DGXH100: + AMP: + <<: *efficientnet_b0_params_4k + arch: efficientnet-b0 + batch_size: 256 + memory_format: nhwc + TF32: + <<: *efficientnet_b0_params_4k + arch: efficientnet-b0 + batch_size: 256 # }}} efficientnet-quant-b0: # {{{ T4: @@ -366,6 +428,16 @@ models: <<: *efficientnet_b0_params_4k arch: efficientnet-quant-b0 batch_size: 256 + DGXH100: + AMP: + <<: *efficientnet_b0_params_4k + arch: efficientnet-quant-b0 + batch_size: 256 + memory_format: nhwc + TF32: + <<: *efficientnet_b0_params_4k + arch: efficientnet-quant-b0 + batch_size: 256 # }}} efficientnet-widese-b4: # {{{ T4: @@ -408,6 +480,16 @@ models: <<: *efficientnet_b4_params_4k arch: efficientnet-widese-b4 batch_size: 64 + DGXH100: + AMP: + <<: *efficientnet_b4_params_4k + arch: efficientnet-widese-b4 + batch_size: 128 + memory_format: nhwc + TF32: + <<: *efficientnet_b4_params_4k + arch: efficientnet-widese-b4 + batch_size: 64 # }}} efficientnet-b4: # {{{ T4: @@ -450,6 +532,16 @@ models: <<: *efficientnet_b4_params_4k arch: efficientnet-b4 batch_size: 64 + DGXH100: + AMP: + <<: *efficientnet_b4_params_4k + arch: efficientnet-b4 + batch_size: 128 + memory_format: nhwc + TF32: + <<: *efficientnet_b4_params_4k + arch: efficientnet-b4 + batch_size: 64 # }}} efficientnet-quant-b4: # {{{ T4: @@ -492,4 +584,14 @@ models: <<: *efficientnet_b4_params_4k arch: efficientnet-quant-b4 batch_size: 64 + DGXH100: + AMP: + <<: *efficientnet_b4_params_4k + arch: efficientnet-quant-b4 + batch_size: 128 + memory_format: nhwc + TF32: + <<: *efficientnet_b4_params_4k + arch: efficientnet-quant-b4 + batch_size: 64 # }}}